Artifacts and Errors in Cross-Spectrum Phase Noise Measurements

1 – FEMTO-ST Institute, Besancon, France 2 – Broadhurst, Bucharest, Romania. Call sign YO3HHZ 3 – Synergy Microwave Corp., Paterson, NJ, USA. Call sign N1UL 4 – Rohde & Schwarz, München, Germany 5 – Istituto Nazionale di Ricerca Metrologica INRiM, Torino, Italy

http://rubiola.org

Outline

- Experiments and results
- Theoretical background (attenuator, xSpectrum, power splitter, oscillators)
- Interpretation of the results
- Uncertainty concepts

CC 4.0, except i stated otherwise

Y. Gruson¹, A. Rus², U. L. Rohde³, A. Roth⁴, E. Rubiola^{1,5}

Full text

arXiv:1912.10449 December 2019

Manuscript MET-101615 submitted to Metrologia

 $N_i = b_i P_i$

Experiments

Adrian inserted an attenuator between OCXO and a FSWP-8 **PN** analyzer

Surprise, the white noise floor got lower

Wenzel 501-04538, 10 MHz OCXO

The Story Starts with

MultiView 🙁	Phase Noise	≯					
Signal Frequency Signal Level Att	9.9999986 MHz 2.79 dBm 0 dB	RBW 10 XCORR Factor 10 Meas Time ~2	0 % 000 7 m	0 dB	atten		Count 1/1 Meas: Pha
1 Noise Spectrum	1					0	1 Avg PN Spur 6dB 🔅
-100 dBc/Hz	10 Hz		100 Hz		1 kHz	10 kl	Hz M2[1] -179.6
-120 dBc/H							
-130 dBc/Hz		M.A.A				_121	dRc/L
-150 dBc/Hz		M					
-160 dBc/Hz					ለ ለ ₥♥		
-170 dBc/Hz		<u>Statis</u>	tio	Att ha	AMA	12 M1	
-180 dBc/Hz			ucal II.		V July	*	A
-190 dBc/Hz				nıt			
-200 dBc/Hz							
©A.Rus, 201	9						
277/1000 1.0 Hz	277/1000	933/3300 2813/	10000 9365/3 Fr	equency Offset	93693/330000	284922/1000000 9	936966/3300000 284926

Experiment (an Old Low-Noise OCXO) Wenzel 501-04623E & Rohde Schwarz FSWP

R&S FSWP-26 PN Analyzer

Attenuation —> erratic effect

Calibration Consistency Wenzel 501-04623E – Compare Rohde Schwarz FSWP to Keysight E5052B

0 dB attenuation exact overlap -> calibration is OK

Reproducibility (Different PN Analyzer) Wenzel 501-04623E & Keysight E5052B

Keysight E5052 PN Analyzer

No attenuation (A=1)

- Same $b_{-3} = -74.5 dBrad^2Hz^2$
- Negligible b₋₂
- (unreadable b₋₁)
- Same $b_0 = -172.4 \text{ dBrad}^2/\text{Hz}$

With attenuation (A<1)

- Minimum PM noise at 9 dB
- P range -> 15 dB max atten

PM vs AM Noise Wenzel 501-04623E & Rohde Schwarz FSWP

A similar phenomenon is observed (Measuring AM, we spent less care in details)

Experiment (Newest Low-Noise OCXO) Wenzel 501-25900B "Golden Citrine" & Rohde Schwarz FSWP

Theoretical Background

- Attenuator
- Cross Spectrum method
- Power splitters
- Quartz oscillators

We must understand the full chain

The Physics of the Attenuator

White RF Noise

radio astronomy and radiometry

 $N_i = kT_i$ input

 $N_o = kT_iA^2 + kT_a\left(1 - A^2\right) \quad \text{output}$

- Input kT_i —> out kT_iA^2 , as any signal
- Term $kT_a(1-A^2)$ needed for the total noise be kT when everything is at T

The Cross Spectrum Method

One-sided cross spectrum $S_{yx}(f) = \frac{2}{T} \left[Y(f) X^*(f) \right]$

Expand

$$S_{yx} = \frac{2}{T} \left[B + C + \varsigma D \right] \left[A + C + \varsigma D \right]$$

 $\mathsf{Uncorrelated}A, B, C, D$ $S_{yx} = S_{cc} + \varsigma S_d$ bias ± 1 result DUT spectrum

Syx with a Correlated Term

channel 1 X = A + Cchannel 2 Y = B + CA, B, C are independent Gaussian noises Re{ } and Im{ } are independent Gaussian noises

$$\begin{split} & \left\langle S_{yx} \right\rangle_{m} = \frac{2}{T} \left\langle YX^{*} \right\rangle_{m} = \frac{2}{T} \left\langle (Y' + iY'') \times (X' - iX'') \right\rangle_{m} \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') + (C' + iC'')\right) & \text{and} & Y = (B' + iB'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') \\ & \left(X = (A' + iA'') + (C' + iC'') + ($$

- A, B = instrument background
 - C = DUT noise

Normalization: in 1 Hz bandwidth $var{A} = var{B} = 1$, $var{C} = \kappa^2$ $var{A'} = var{A''} = var{B'} = var{B''} = 1/2$, and $var{C'} = var{C''} = \kappa^2/2$

... and work it out !!!

S_{yx} with Correlated Term $\kappa \neq 0$ All the DUT signal goes in Re{ S_{yx} }, Im{ S_{yx} } contains only noise

Note: DF < 2m See vol.XVI p.56

Cross-Spectrum Estimators

Absolute-value estimator

$$\widehat{S_{yx}} = \left| \left\langle S_{yx} \right\rangle_m \right|$$

- Mostly used
- Biased
- Slow <- noise in Im{S_{vx}}
- Hides negative outcomes

$$\mathbb{E}\{\widehat{\mathsf{b}_o}\} = \frac{kT_i}{P_i} + \frac{k(1-A^2)T_a}{A^2P_i} + \frac{k(\varsigma T_c - T_s)}{A^2P_i}$$

Real-part estimator

$$\widehat{S_{yx}} = \Re\left\{\left\langle S_{yx}\right\rangle_m\right\}$$

- Not used in PM noise analyzers (?)
- Unbiased
- Fastest
- Shows negative outcomes

$$\begin{split} & \mathbb{E}\{\widehat{\mathsf{b}_o}\} = \\ & \frac{kT_i}{P_i} + \frac{k(1-A^2)T_a}{A^2P_i} + \frac{k(\varsigma T_c - T_s)}{A^2P_i} \end{split}$$

Account for a crosstalk term ζT_c

3 dB (loss-free) power splitter

 $S_{\varphi\varphi} = k(T_o - T_s) / P_o$

Same PM noise $S_{\varphi\varphi} = \frac{k(T_o - T_s)}{P_o}$

The Old-Style Quartz Oscillator

No problem with this

- The buffer amplifies the core noise
- T>>Ts
- Small under-estimation of the DUT noise

The Rohde Oscillator

U. L. Rohde, "Crystal oscillator provides low noise," Electronic Design, vol. 21, p. 11 &14, Oct. 11, 1975

Out of the xtal bandwidth

- Sustaining ampli and Rs are not coupled to the output
- The output noise is that of a small resistor

 $50 \Omega => 0.9 \text{ nV}/\sqrt{\text{Hz}}$

 $20 \Omega => 0.57 \text{ nV}/\sqrt{\text{Hz}}$

The cross spectrum was still not used

The Thermally-Limited Oscillator

Out of the xtal bandwidth

- Sustaining ampli and Rs are not coupled to the output to the CB amplifier
- The output noise is that of R_C
- The cross spectrum is $Syx \approx 0$

The Sub-Thermally-Limited Oscillator

• Beyond f_c ,

- |Z_o| >> 50 Ω
- The power-splitter input is open circuit

Interpretation

Parameters $T_s = 320 \text{ K}$ $T_a = 295 \text{ K}$ $\zeta T_{c} = -122 \text{ K}$ $T_{\rm eq} = 4528 \, {\rm K}$

FSWP 26 PN analyzer +9.9 dBm +1.1 dBm –7.4 dBm *f* / Hz 10³ 10⁶ 10⁷ 10⁴ 10⁵

Parameters $T_s = 320 \text{ K}$ $T_a = 295 \text{ K}$ $\zeta T_c = -122 \text{ K}$ $T_{\rm eq} = 50 \ {\rm K}$

Experiment Hacked FSWP-26 \rightarrow extract Re{S_{yx}} and Im{S_{yx}}

HIC SVNT LEONES (here be dragons) unexplored land, or to a land where humans are not permitted

$1/f^2$ and $1/f^3$ regions, all right

- Re{ S_{yx} } $\gg 0$
- $|Im{S_{yx}}| \ll |Re{S_{yx}}|$

White region wrong • $\text{Re}\{S_{yx}\} < 0$

Guess the Origin of Crosstalk

Locate where strongest and weakest signal are close together

$kT_{\rm C} = 1.7 \times 10^{-21} \text{ W/Hz}$ with $T_c = 122$ K

R&S SMA100A synthesizer LO +20 dBm, ≈100 MHz PM noise –160 dBrad²/Hz Sidebands –140 dBm/Hz

Uncertainty

Learn form the Scriptures

B	JCGM 200:2012	
	International vocabulary of metrology – Basic and genera concepts and associated terr (VIM)	al ns
	3rd edition 2008 version with minor corrections	
	Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés (VIM) 3 ^e édition	
	Version 2008 avec corrections mineur	res

Learn from the VIM

JCGM 200:2012, International Vocabulary of Metrology Joint Committee for Guides in Metrology

System

2.28 – Type A evaluation of measurement uncertainty Type A evaluation evaluation of a component of measurement uncertainty by a statistical analysis of measured quantity values obtained under defined measurement conditions

2.29 – Type B evaluation of measurement uncertainty Type B evaluation evaluation of a component of measurement uncertainty determined by means other than a Type A evaluation of measurement uncertainty

The definitions are copied verbatim from the VIM, © JCGM 2012

4.29 – null measurement uncertainty measurement uncertainty where the specified measured quantity value is zero

2.52 – influence quantity

quantity that, in a direct measurement, does not affect the quantity that is actually measured, but affects the relation between the indication and the measurement result

2.27 – definitional uncertainty

component of measurement uncertainty resulting from the finite amount of detail in the definition of a measurand

Uncertainty

Example (one bin of $S_{yx}(f)$)

Define the measurement conditions

Impedance in the full BW is critical

Define the measurement target

- The full high-resolution spectrum?
- Coefficients of the polynomial law?
- Any better idea?

Example of outcomes

- (A) Correct
- (B) Correct (likely smaller u_A)
- (C) Null measurement uncertainty applies
- (D) Should not be reported (worse than (C))

Conclusions

- Use averaging wisely
- Correct for the temperature of the power splitter (trivial if the instrument measures P_0)
- Be wary of crosstalk
- (Re{ S_{yx} })_m is more reliable (and faster) than $|(S_{yx})_m|$ Define the measurand and the operating conditions Understand Type-A, Type B and Null uncertainty • Be wary of too-low-noise oscillators

Acknowledgments

- AR Electronique (instruments and OCXOs) AR-E is not related to A.Rus (nor to any of us)
- Rohde & Schwarz Romania (FSWP-8)

Grants

- ANR-11-EQPX-0033-OSC-IMP
- ANR-10-LABX-48-01
- Région Bourgogne Franche Comté

