

Phase-Noise and Amplitude-Noise Measurement of DACs and DDSs

Claudio E. Calosso⁽¹⁾, A. Carolina Cárdenas Olaya⁽¹⁾, Enrico Rubiola^{(2),(1)} (1) INRiM, Torino, Italy (2) FEMTO-ST Institute, Besancon, France

Outline

- Introduction
- Method
- Experimental details
- Results

home page http://rubiola.org

Basic DDS Scheme

	-	
quantity	digital	analog
state variable	n	$\theta = 2\pi \frac{n}{\mathcal{D}}$
assoc. complex		$z = e^{j\theta}$
modulo	$\mathcal{D} = 2^m$	2π
increment	\mathcal{N}	$\eta = 2\pi \frac{\mathcal{N}}{\mathcal{D}}$
time	$k, 0, 1, 2, \dots$	$t = k/\nu_s$
clock freq. ν_s output freq. $\nu_0 = \frac{\mathcal{N}}{\mathcal{D}} \nu_s$		

High resolution $D = 2^{48}$ $v_s = 1 \text{ GHz}$

 $\Delta v = 3.55 \ \mu Hz$

High-Speed DACs Have DDSs Inside AD9144 NCO gain quadrature DC offset

If no internal NCO

- Implement the NCO in FPGA
- The brute force of the JESD204B suffices
- IP NCOs available
- Minimal NCO not difficult to implement

The Beast to Kill Aka, the lowest noise we have seen in a DDS

Not a real challenge, but low enough to spend attention

Traditional Measurement Methods

Saturated mixer

Cross-spectrum and averaging —> known problems

- Low output power, ≈ 0 dBm, the mixer takes $\approx 10 \text{ dBm} - \text{amplifier}$
- Some commercial instruments have only one input (FSWP, E5052A), ref 1 and ref 2 come from internal synthesizers

- DACs and DDSs have higher resolution and clock frequency than ADCs
- At least 100 averages for 10 dB noise rejection, 1000 for 15 dB
- How long does it take going down to $\leq 1 \text{ mHz}$?

Alternative?

Bridge (Interferometric) AN-PN Measurement

- Suppress the carrier
- Amplify and detect the noise sidebands
- PN results from (detected noise) / carrier

Rubiola & al, RSI 70(1) 220-225, Jan 1999 Also: Ivanov, IEEE T UFFC 45(6) 1526-1536, Nov 1998 Rubiola, RSI 73(6) 2445-2457, Jun 2002

Noisy signal $v(t) = V_0 \cos(\omega t) + x \sin(\omega t) - y \sin(\omega t)$ $\varphi = x/V_0 \qquad \qquad \alpha = y/V_0$

Suppressed carrier $v_{\Lambda}(t) = x \sin(\omega t) - y \sin(\omega t)$

Synchronous detection $[v_{\Delta} 2\cos(\omega T)] * h_{lp} = x$ $[v_{\Delta} 2 \sin(\omega T)] * h_{lp} = y$

Use the detected x and y to estimate AM and PM noise

Bridge (Interferometric) AN-PN Measurement

- Suppress the carrier
- Amplify and detect the noise sidebands
- PN results from (detected noise) / carrier

Rubiola & al, RSI 70(1) 220-225, Jan 1999 Also: Ivanov, IEEE T UFFC 45(6) 1526-1536, Nov 1998 Rubiola, RSI 73(6) 2445-2457, Jun 2002

Benefits

- Lowest background noise
 - Amplifier NF —> white noise
 - No up-conversion of near-dc 1/f with high carrier rejection
- Low 50-60 Hz pickup due to Microwave gain before detection
- The noise in the LO arm is rejected (amplification allowed)
- No AM noise pickup, as in the saturated mixer

Annoying

- Difficult alignment
- Narrow band setup

How Amplifier's Flicker Works

- No carrier
 - White noise only in the RF region
 - Flicker in the near DC region
 - No RF flicker
- RF noise sidebands result from upconversion
- AM and PM noise ≈ independent of carrier power

1

:

Bridge with a Commercial Instrument?

Saturated-mixer instruments

- Only some give full access to the mixer
- Modern instruments use two channels and correlation
 - One channel cannot be used alone

Digital instruments

• Nope, extracting the phase requires a carrier

Controlled Amount of Residual Carrier

Generalization, for Small η

 $\begin{bmatrix} \epsilon \\ \psi \end{bmatrix} = \frac{1}{\eta} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \alpha_2 - \alpha_1 \\ \varphi_2 - \varphi_1 \end{bmatrix}$

$$\begin{bmatrix} S_{\epsilon} \\ S_{\psi} \end{bmatrix} = \frac{1}{\eta^2} \begin{bmatrix} \cos^2(\theta) & \sin^2(\theta) \\ \sin^2(\theta) & \cos^2(\theta) \end{bmatrix} \begin{bmatrix} S_{\alpha 2} + S_{\alpha 2} \\ S_{\varphi 2} + S_{\varphi 2} \end{bmatrix}$$

Bridge vs Modulation-Index Amplification

Bridge (Interferometer)

- Reference has the same frequency
- Reference phase selects AM/PM detection

Modulation-Index Amplification

- Arbitrary reference frequency
- Residual carrier selects AM/PM detection
- Either AM or PM detector
- Still low W & 1/f noise
- Adjust amplitude and phase with the DDS control word

Detectors

All-digital phase meters

- Direct digitization of the RF signal
- High background noise
 - Heavy correlation and averaging
 - AVG only partially trusted
- Flexible, $f_{in} \neq f_{ref}$
- Laboratory (FEMTO, Holmes, Miles...)
- Brand (Jackson Lab, Symmetricom)

Simple amplitude detectors

- Power detector & spectrum analyzer
- Simple lab implementation
- Fair background noise
 - No AN \rightarrow PN pollution
 - Optional correlation and averaging
- No known commercial instrument

E. Rubiola, arXiv:physics/0512082v1, Dec 2005

(1) Full carrier suppression

- Sub-binary search by inspection with a spectrum analyzer
- Start from phase
- Alternate phase and amplitude

Alignment

(2) Add a small carrier

- Real: modulation index amplification
- Imaginary —> AM-PM interchange and model-index ampli
- Best results with -20 to -40 dB

Trade accuracy vs carrier (and 1/f) rejection

- The upper bits are spent for carrier rejection
- Lower bits determine the accuracy of the residual carrier

Accuracy

Example, ENOB = 1220 dB rejection 0.1 -> 3.33 bits Accuracy 12-1-3.33 = 7.67 bits 0.5% -> 0.04 dBProbably not needed for AN / PN 40 dB rejection 0.01 -> 6.67 bits Accuracy 12-1-6.67 = 4.33 bits 5% —> 0.4 dB Still OK for AN / PN

The Full Scheme

Z-Board ZC706

White PM Noise

- DAC output +2 dBm
- Amplifier input –5 dBm (7 dB loss DAC—> amplifier)
- Thermal energy –174 dBm/Hz
- Ampli noise figure F = 2 dB
- $S\phi = S\alpha = -167 \text{ dBrad}^2/\text{Hz}$ (-174+5+2)

Background Noise

Flicker PM Noise

- Ampli flicker –130 dB at 1 Hz (conservative)
- Carrier rejection 30 dB
- Expected –160 dBrad²/Hz at 1 Hz
- More severe limitation from the noise analyzer

PN Measured with the Phase Detector

Phase noise measured with the phase meter (same information)

AN Measured with the Phase Detector

Amplitude noise measured with the phase meter (same information)

AN & PN Measured with Power Detector²⁰

The dispersion of results will be fixed

Comparison

- Best results with 30 dB gain
- The results with the two methods match perfectly
- Clock jitter contributes to the difference, PN > AN

Exact 1/f PN Over 7.5 Decades

- PN between two outputs (Microsemi 5125A)
- Unfortunately, the axes were misaligned ($\theta \approx 60^{\circ}$)
- Exact 1/f slope, ± 1 dB over 7.5 decades
- Insufficient averaging below 0.7 mHz

How We Solved the Angle

For small η

 $\begin{bmatrix} S_{\epsilon} \\ S_{\psi} \end{bmatrix} = \frac{1}{\eta^2} \begin{bmatrix} \cos^2(\theta) & \sin^2(\theta) \\ \sin^2(\theta) & \cos^2(\theta) \end{bmatrix} \begin{bmatrix} S_{\alpha 2} + S_{\alpha 2} \\ S_{\varphi 2} + S_{\varphi 2} \end{bmatrix}$

Trusted, from the "comparison" $\eta^2 S_{\psi} = c_{-1}/f$ with $c_{-1} = 1.48 \times 10^{-11}$ $h_{-1} = 8 \times 10^{-12}$ and $b_{-1} = 3.4 \times 10^{-11}$

Solve $c_1 = h_{-1}(1 - \cos^2 \theta) + b_{-1} \cos^2 \theta$

Result $\theta = 1.03 \text{ rad} (59^\circ)$ $\eta^2 S_{\psi} = \left[0.74 S_{\alpha} + 0.26 S_{\varphi}\right]$

Conclusions

- Original method
 - Simple & highly suitable to DACs
 - Can be automated
- RF gain —> little/no need of correlation
- Results are consistent
 - Modulation-index amplification
 - AM <--> PM conversion
- Flicker observed over a wide span
 - Exact 1/f, <1 dB discrepancy / 7.5 decades
 - home page http://rubiola.org

