

French and Italian National Research Councils

Stability Measurement of 3 CSOs with Tracking DDSs and Two-Sample COV

C. E. Calosso¹, F. Vernotte², V. Giordano^{2,3}, C. Fluhr⁴, B. Dubois⁴, E. Rubiola^{1,2,3}

1 INRIM, Torino, Italy,3 FEMTO-ST Institute, France,

2 Besançon Observatory, France4 FEMTO Engineering, France

http://rubiola.org

Motivations and Outline

10 GHz CSOs

- 2×10⁻¹⁶...10⁻¹⁵ ADEV at 1...10⁵ s
- Not tested at 100 MHz

TDDS

- 2×10⁻¹⁴/τ ADEV at 100 MHz
- Statistical limit?

Statistics

- Scalable
- Challenging instrument and oscillators

Let's put all things together and play

Liquid-He Sapphire Oscillator

- Pound frequency lock to the cavity ٠
- The same cavity is used in the VCO

- \mathbf{n}_{ESR} frequency 0.2 ppm Transportable unit –> stability &
- 1 unit in progress
- µHz-resolution synthesis

(2 more units delivered to other labs)

N_{ESB}

Mechanical & Thermal Engineering

First generation: 6kW three-phase Current generation: 3 kW mono-phase Low acceleration sensitivity

$$\frac{1}{\gamma}\frac{\Delta\nu}{\nu}\,\sim\,3.2\times10^{-10}\,/g$$

Thermal ballast

Frequency Synthesis

- Resonator engineering —> 10 GHz 10 MHz ±3 MHz
- Small frequency offset -> DDS is OK
- Uneven frequencies —> No crosstalk

Tracking DDS —> Digital PLL

TDDS —> M. Calligaris, G. A. Costanzo, C. E. Calosso, Proc 2015 IFCS pp.681-683

AD9912 —> Time-PM Noise at ≥5 MHz

DDS Noise —> C. E. Calosso, Y. Gruson, E. Rubiola, Proc 2012 IFCS p.777-782 C. E. Calosso, E. Rubiola, Phase Noise and Jitter in Digital Electronics, arXiv:1701.00094 [physics.ins-det]

The 6-Channel TDDS

6 TDDSs, control unit, and interface in a small instrument

Thermal Image

Small dissipation and thermal symmetry improve phase stability

Statistics

Time Interval Counters		Oscillator		Instrument		
	$x(t) = \frac{\varphi(t)}{2\pi v_0}$	Single	Delta	Out Single	put Delta	Noise
B B B B X 4 TIC /φM X	$y(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$	× _B	X _{BA}	x ₂	<i>x</i> ₂₁	<i>x</i> _{n21}
C 5 TIC /φM	$z(t,\tau) = \frac{\overline{y}(t) - \overline{y}(t-\tau)}{\sqrt{2}}$	${\mathcal Y}_B$	${\cal Y}_{BA}$	<i>Y</i> ₂	<i>Y</i> ₂₁	y_{n21}
	$z = \frac{x_2 - 2x_1 + x_0}{\sqrt{2} \tau}$	Z _B	Z _{BA}	<i>z</i> ₂	z ₂₁	z _{n21}
AVAR $\sigma_y^2(\tau) = E[z^2]$	2-Sample COV $\sigma_{y_A, y_B}(\tau) = E[z_B z_A]$	σ_B^2	σ_{BA}^2	σ_1^2	σ_{21}^2	σ_{n21}^2
		$\mathbf{U}_{B,A}$	 		 	

Statistical Tools

Noisy Instruments

3-Cornered Hat $\frac{1}{2} E[z_{12}^2 + z_{34}^2 - z_{56}^2] = \sigma_B^2 + \frac{1}{2} [\sigma_{n12}^2 + \sigma_{n34}^2 - \sigma_{n56}^2]$ **2-Sample COV** $E[z_{21}z_{34}] = \sigma_B^2$ background noise -> 0

At 100 MHz the Time Interval Counter is not an option

2-Sample COV with TDDS

Channels remapping $\sigma_B^2 = E[z_{32}z_{45}]$

- Expand all terms
- Look at convergence laws
- Room for improvement

First improvement

$$\sigma_B^2 = \mathbb{E}[z_{3\langle 12\rangle} z_{4\langle 56\rangle}] \quad \leftarrow z_{i\langle jk\rangle} = z_i - \frac{z_j + z_k}{2}$$

We use this $-> \sigma_B^2$

Second improvement

$$\sigma_B^2 = \frac{1}{2} E[z_{3\langle 12 \rangle} z_{4\langle 56 \rangle} + z_{4\langle 12 \rangle} z_{3\langle 56 \rangle}]$$

11

Experiment

2-sample COV

- INRIM 6-Ch TDDS
- 100 MHz outputs
- 2-sample covariance

3-cornered hat

- Lange / K&K counters
- 10 GHz outputs
- Different beat notes prevent crosstalk

CSO #1 Marmotte

l electronics

control

Facking DDS

Proportional-Integral control 22±0.5 °C, <0.2 °C/H #3 50±10% Hygrometry

CSO #2

Uliss

electron

contro

d

Time Domain and ADEV

 10^{6}

2-COV vs 3-CH

 $10GHz \rightarrow 100 MHz$ synthesizer affects short-term ($\leq 100 \text{ s}$) stability

2COV algorithm and 3CH give the same result

Conclusions

- Full validation of the 100 MHz output
- 5–400 MHz TDDS range
- Next step: composite clock, 2×10⁻¹⁴/τ DDS limit