

Tutorials of the 2014 European Frequency and Time Forum

The Leeson effect

Enrico Rubiola

CNRS FEMTO-ST Institute, Besancon, France

Contents

- The Leeson effect in a nutshell
- Heuristic explanation of the Leeson effect
- Resonator theory
- Formal proof for the Leeson effect
- the Leeson effect in delay-line oscillators
- AM-PM noise coupling
- Oscillator hacking
- Acknowledgement and conclusions

home page http://rubiola.org

The Leeson effect in a nutshell²

David B. Leeson, A simple model for feed back oscillator noise, Proc. IEEE 54(2):329 (Feb 1966)

Heuristic explanation of the Leeson effect

General oscillator model

4

Barkhausen condition $A\beta = 1$ at ω_0 (phase matching)

The model also describes the negative-R oscillator

.

 $+arg(\beta)+\psi=0$ = ~ Ψ $Q \frac{A\omega}{\omega_0} =$ ψ

6

Heuristic derivation of the Leeson formula

Though obtained with simplifications, this result turns out to be is exact

Oscillator noise -- real sustaining amplifier --

The sustaining-amplifier noise is $S_{\phi}(f) = b_0 + b_{-1}/f$ (white and flicker)

The effect of the output buffer

Cascading two amplifiers, flicker noise adds as $S_{\Phi}(f) = [S_{\Phi}(f)]_1 + [S_{\Phi}(f)]_2$

stability in oscillators, © Cambridge University Press

The resonator natural frequency fluctuates

- The oscillator tracks the resonator natural frequency, hence its fluctuations
- The fluctuations of the resonator natural frequency contain 1/f and 1/f² (frequency flicker and random walk), thus 1/f³ and 1/f⁴ of the oscillator phase
- The resonator bandwidth does not apply to the natural-frequency fluctuation.
 (Tip: an oscillator can be frequency modulated at a rate >> fL)

10

Figures are from E. Rubiola, Phase noise and frequency stability in oscillators, © Cambridge University Press

Resonator theory

Linear Time-Invariant system

Impulse response and frequency response in the amplitude-phase space

Resonator – time domain

 ω_n

Q

au

$$\ddot{x} + \frac{\omega_n}{Q}\dot{x} + \omega_n^2 x = \frac{\omega_n}{Q}\dot{v}(t)$$

shorthand: $f = \omega/2\pi$

natural frequency quality factor relaxation time $\tau = \frac{2Q}{\omega_n}$ free-decay pseudofrequency ω_p $\omega_p = \omega_n \sqrt{1 - 1/4Q^2}$

Resonator – frequency domain

RESONATOR

$$H(s) = \frac{\omega_{0}}{Q} - \frac{s}{s^{2} + \frac{\omega_{0}}{Q}} s + \omega_{0}^{2}$$

$$define
define
$$\mathcal{H} = \frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega} - \frac{\omega + \omega}{1 + \int Q^{2}} + \frac{\omega - \omega_{0}}{2}$$

$$H(Iw) = \frac{1}{1 + \int Q^{2}} = \frac{1 - \int Q^{2}}{1 + Q^{2}}$$

$$Real, Imag Modulus, phase
$$R(\omega) = \frac{1}{1 + Q^{2}} + \frac{M(\omega)}{1 + Q^{2}} = \frac{1}{\sqrt{1 + Q^{2}}}$$

$$I(\omega) = -\frac{Qz}{1 + Q^{2}} = \frac{1}{\sqrt{(\omega)}} = -acchaeQz$$$$$$

$$\chi = \frac{\omega}{\omega_n} - \frac{\omega_n}{\omega}$$
$$\beta = \frac{1}{1+jQ\chi}$$
$$\Re\{\beta\} = \frac{1}{1+Q^2\chi^2}$$
$$\Im\{\beta\} = \frac{-Q\chi}{1+Q^2\chi^2}$$
$$|\beta|^2 = \frac{1}{1+Q^2\chi^2}$$

B4

14

 $\arg(\beta) = -\arctan(Q\chi)$

Linear time-invariant (LTI) systems

impulse response

response to the generic signal v_i(t)

 $H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$

H(s), $s=\sigma+j\omega$, is the analytic continuation of H(ω) for causal system, where h(t)=0 for t<0

15

Laplace-transform patterns

Fundamental theorem of complex algebra: F(s) is completely determined by its roots

Resonator impulse response

Can't figure out a $\delta(t)$ of phase or amplitude? Use Heaviside (step) u(t) and differentiate

Response to a phase step к

18

Resonator impulse response ($\omega_0 = \omega_n$ **)**

$$\begin{aligned} v_i(t) &= \underbrace{\cos(\omega_0 t) \mathfrak{u}(-t)}_{\text{switched off at } t = 0} + \underbrace{\cos(\omega_0 t + \kappa) \mathfrak{u}(t)}_{\text{switched on at } t = 0} & \text{phase step } \kappa \text{ at } t = 0 \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_p t) e^{-t/\tau} + \cos(\omega_p t + \kappa) \left[1 - e^{-t/\tau}\right] & t > 0 & \text{output} \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_p t) - \kappa \sin(\omega_p t) \left[1 - e^{-t/\tau}\right] & \kappa \to 0 & \text{linearize} \end{aligned}$$

$$\begin{aligned} v_o(t) &= \cos(\omega_0 t) - \kappa \sin(\omega_0 t) \left[1 - e^{-t/\tau}\right] & \omega_p \to \omega_0 & \text{high } \mathsf{Q} \end{aligned}$$

$$\begin{aligned} \mathbf{V}_{\mathbf{o}}(t) &= \frac{1}{\sqrt{2}} \left\{ 1 + j\kappa \left[1 - e^{-t/\tau}\right] \right\} & \text{slow-varying phase vector} \end{aligned}$$

$$\begin{aligned} \text{arctan} \left(\frac{\Im\{\mathbf{V}_{\mathbf{o}}(t)\}}{\Re\{\mathbf{V}_{\mathbf{o}}(t)\}} \right) \simeq \kappa \left[1 - e^{-t/\tau}\right] & \text{phasor angle} \end{aligned}$$

$$\begin{aligned} \text{delete } \kappa \text{ and differentiate} \end{aligned}$$

$$\begin{aligned} \text{b}(t) &= \frac{1}{\tau} e^{-s\tau} & \leftrightarrow & \mathbf{B}(s) = \frac{1/\tau}{s+1/\tau} \end{aligned}$$

Detuned resonator ($\omega_0 \neq \omega_n$)

amplitude phase lpha arphi arphi

$$= \begin{bmatrix} \mathbf{b}_{\alpha\alpha} & \mathbf{b}_{\alpha\varphi} \\ \mathbf{b}_{\varphi\alpha} & \mathbf{b}_{\varphi\varphi} \end{bmatrix} \ast \begin{bmatrix} \varepsilon \\ \psi \end{bmatrix} \quad \leftrightarrow \quad \begin{bmatrix} \mathcal{A} \\ \Phi \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{\alpha\alpha} & \mathbf{B}_{\alpha\varphi} \\ \mathbf{B}_{\varphi\alpha} & \mathbf{B}_{\varphi\varphi} \end{bmatrix} \begin{bmatrix} \mathcal{E} \\ \Psi \end{bmatrix}$$

$$\begin{split} \Omega &= \omega_0 - \omega_n & \text{detuning} \\ \beta_0 &= |\beta(j\omega_0)| & \text{modulus} \\ \theta &= \arg(\beta(j\omega_0)) & \text{phase} \end{split}$$

$$v_{i}(t) = \underbrace{\frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t)}_{\text{switched off at }t = 0} + \underbrace{\frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta + \kappa)\,\mathfrak{u}(t)}_{\text{switched on at }t = 0} \text{ phase step }\kappa \text{ at }t=0$$

$$= \frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t) + \frac{1}{\beta_{0}}\left[\cos(\omega_{0}t - \theta)\cos\kappa - \sin(\omega_{0}t - \theta)\sin\kappa\right]\,\mathfrak{u}(t)$$

$$\simeq \frac{1}{\beta_{0}}\cos(\omega_{0}t - \theta)\,\mathfrak{u}(-t) + \frac{1}{\beta_{0}}\left[\cos(\omega_{0}t - \theta) - \kappa\sin(\omega_{0}t - \theta)\right]\,\mathfrak{u}(t) \quad \kappa \ll 1.$$

Detuned resonator (cont.)

$$\begin{aligned} v_{o}(t) &= \cos(\omega_{0}t) - \kappa \sin(\omega_{0}t) + \kappa \sin(\omega_{n}t) e^{-t/\tau} \quad \text{output, large } \mathbf{Q} (\mathbf{\omega}_{p} = \mathbf{\omega}_{r}, \mathbf{\omega}_{n}t) \\ &= \mathbf{use } \mathbf{\Omega} = \mathbf{\omega}_{0} - \mathbf{\omega}_{n} \\ v_{o}(t) &= \cos(\omega_{0}t) \left[1 - \kappa \sin(\Omega t) e^{-t/\tau} \right] - \kappa \sin(\omega_{0}t) \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \\ &\text{slow-varying phase vector} \\ \mathbf{V}_{o}(t) &= \frac{1}{\sqrt{2}} \left\{ 1 - \kappa \sin(\Omega t) e^{-t/\tau} + j\kappa \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \right\} \quad \kappa \ll 1 \\ &\arctan \frac{\Im\{\mathbf{V}_{o}(t)\}}{\Re\{\mathbf{V}_{o}(t)\}} = \kappa \left[1 - \cos(\Omega t) e^{-t/\tau} \right] \quad \text{angle} \\ &|\mathbf{V}_{o}(t)| = |\mathbf{V}_{o}(0)| - \kappa \sin(\Omega t) e^{-t/\tau} \quad \text{amplitude} \end{aligned}$$

au

Resonator step and impulse response

$$b](t) = \begin{bmatrix} \left(\Omega \sin \Omega t + \frac{1}{\tau} \cos \Omega t\right) e^{-t/\tau} & \left(-\Omega \cos \Omega t + \frac{1}{\tau} \sin \Omega t\right) e^{-t/\tau} \\ \left(-\Omega \cos \Omega t + \frac{1}{\tau} \sin \Omega t\right) e^{-t/\tau} & \left(\Omega \sin \Omega t + \frac{1}{\tau} \cos \Omega t\right) e^{-t/\tau} \end{bmatrix}$$

check on the sign of b₂₁

Frequency response

check on the sign of B₂₁

Formal proof for the Leeson effect

E. Rubiola & R. Brendel, arXiv:1004.5539v1, [physics.ins-det] 25 Low-pass representation of AM-PM noise

Effect of feedback

Oscillator transfer function (RF)

Leeson effect

27

Oscillator_A with detuned resonator

Low-pass model of amplitude (1)

First we need to relate the system restoring time τ_r to the relaxation time τ

simple feedback theory

$$u = \epsilon + v_2$$

$$v_2 = \frac{1}{\tau} \int (v_1 - v_2) dt$$

$$v_2 = u - \epsilon$$

$$v_1 = v = Au$$

$$u = \epsilon + \frac{1}{\tau} \int (A - 1)u + \epsilon dt$$

differential equation

$$-\frac{1}{\tau} \left(A - 1 \right) u = \frac{1}{\tau} \epsilon + \dot{\epsilon}$$

The Laplace / Heaviside formalism cannot be used because the amplifier is non-linear

Common types of gain saturation

Gain compression is necessary for the oscillation amplitude to be stable

Low-pass model of amplitude (2)

Startup – analysis vs. simulation

Gain fluctuations – definition

Gain compression is necessary for the oscillation amplitude to be stable

Gain fluctuations – output is u

Gain fluctuations – output is v

boring algebra relates α_v to α_u

$$v = Au$$

$$A = -\gamma(u-1) + 1 + \eta$$

$$v = [-\gamma(u-1) + 1 + \eta] u$$

$$v = [-\gamma\alpha_u + 1 + \eta] [1 + \alpha_u]$$

$$\chi + \alpha_v = \chi + \eta - \gamma\alpha_u + \alpha_u - \alpha_u \eta - \gamma \alpha_u^2$$

$$\alpha_v = (1 - \gamma)\alpha_u + \eta$$

$$\lim_{\alpha_v \to 0} \frac{\alpha_v - \eta}{1 - \gamma}$$

$$\lim_{\alpha_v \to 0} \frac{\alpha_v - \eta}{1 - \gamma}$$

$$\begin{split} & \left(s + \frac{\gamma}{\tau}\right) \mathcal{A}_{u}(s) = \frac{1}{\tau} \mathcal{N}(s) \quad \begin{array}{l} \begin{array}{l} \text{starting} \\ \text{equation} \end{array} \\ & \mathcal{A}_{u}(s) = \frac{\mathcal{A}_{v}(s) - \mathcal{N}(s)}{1 - \gamma} \end{split} \\ & \left(s + \frac{\gamma}{\tau}\right) \mathcal{A}_{v}(s) = \left(s + \frac{1}{\tau}\right) \mathcal{N}(s) \end{array} \\ & \operatorname{H}(s) = \frac{\mathcal{A}_{v}(s)}{\mathcal{N}(s)} \qquad \begin{array}{l} \begin{array}{l} \text{definition} \end{array} \\ & \operatorname{H}(s) = \frac{s + 1/\tau}{s + \gamma/\tau} \qquad \begin{array}{l} \text{result} \end{array} \end{split}$$

Additive noise – output is u

 $u = 1 + \alpha_u$

 $v = 1 + \alpha_v$

low-pass v₂ relaxation time $\tau = 2Q/v_0$ file: ele-AM-scheme

ε(t)

Linearize for low noise and use the Laplace transforms

$$\alpha_u(t) \leftrightarrow \mathcal{A}_u(s) \quad \text{and} \quad \epsilon(t) \leftrightarrow \mathcal{E}(s)$$
 $H_u(s) = \frac{\mathcal{A}_u(s)}{\mathcal{E}(s)} \quad \text{definition}$

$$\mathrm{H}_u(s) = \frac{s+1/\tau}{s+\gamma/\tau} \quad \text{result}$$

 $\dot{\alpha}_u + \frac{\gamma}{\tau} \alpha_u = \dot{\epsilon} + \frac{1}{\tau} \epsilon$

linearized equation

low noise

 $\left(s + \frac{\gamma}{\tau}\right) \mathcal{A}_u(s) = \left(s + \frac{1}{\tau}\right) \mathcal{E}(s)$ Laplace transform

Additive noise – output is v

boring algebra relates a' to a

$$v = Au$$

$$A = 1 - \gamma(u - 1)$$

$$v = [1 - \gamma(u - 1)]u$$

$$1 + \alpha_v = [1 - \gamma\alpha_u] [1 + \alpha_u]$$

$$A + \alpha_v = A + \alpha_u - \gamma\alpha_u - \gamma\alpha_u^2$$

$$\alpha_v = (1 - \gamma)\alpha_u$$
linearization
for low noise
$$\alpha_u = \frac{\alpha_v}{1 - \gamma}$$

$$\frac{1}{1-\gamma} \left(s + \frac{\gamma}{\tau} \right) \mathcal{A}_v(s) = \left(s + \frac{1}{\tau} \right) \mathcal{E}(s) \frac{\text{Laplace}}{\text{transform}}$$

 $\frac{1}{1-\gamma} \left(\dot{\alpha}_v + \frac{\gamma}{\tau} \alpha_v \right) = \dot{\epsilon} + \frac{1}{\tau} \epsilon$

$$\mathbf{H}(s) = \frac{\mathcal{A}_v(s)}{\mathcal{E}(s)}$$

$$\mathrm{H}(s) = (1-\gamma) \, rac{s+1/ au}{s+\gamma/ au} \quad ext{result}$$

 $\gamma < 1$ $j\omega$ $-1/\tau - \gamma/\tau$ σ $[\gamma > 1]$ $j\omega$ $-\gamma/\tau - 1/\tau$

Parametric noise & AM-PM noise coupling

38

E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

Effect of AM-PM noise coupling

E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

Noise transfer function, and spectra

Notice that the AM-PM coupling can increase or decrease the PM noise

In a real oscillator, flicker noise shows up below some 10 kHz In the flicker region, all plots are multiplied by 1/f

A. Savchenkov & al, Opt. Lett 35(10) 1572-74, 15 may 2010, Fig.2

Leeson effect in the delay-line oscillator

Motivations

- Potential for very-low phase noise in the 100 Hz 1 MHz range
- Invented at JPL, X. S. Yao & L. Maleki, JOSAB 13(8) 1725–1735, Aug 1996
- Early attempt of noise modeling, S. Römisch & al., IEEE T UFFC 47(5) 1159–1165, Sep 2000
- PM-noise analysis, E. Rubiola, Phase noise and frequency stability in oscillators, Cambridge 2008 [Chapter 5]
- Since, no progress in the analysis of noise at system level
- Nobody reported on the consequences of AM noise

Low-pass representation of AM-PM noise

Leeson effect

E. Rubiola, Phase noise and frequency stability in oscillators, Cambridge 2008

Gain fluctuations – output is u(t)

The low-pass has only 2nd order effect on AM

u = A(t- au) u(t- au) equation $A = 1 - \gamma(u-1) + \eta$

use u=a+1, expand and linearize for low noise $\alpha(t) = (1 - \gamma)\alpha(t - \tau) - \gamma \alpha^2(t - \tau) \rightarrow \mathbf{0}$ $+ \eta(t - \tau) + \eta(t - \tau)\alpha(t - \tau) \rightarrow \mathbf{0}$

linearized equation

$$\alpha(t) = (1 - \gamma)\alpha(t - \tau) + \eta(t - \tau)$$

Laplace transform

$$\mathcal{A}_u(s) = \left[1 - (1 - \gamma)e^{-s\tau}\right] = \mathcal{N}(s)$$

Linearize for low noise and use the Laplace transform

$$\alpha_u(t) \leftrightarrow \mathcal{A}_u(s) \quad \text{and} \quad \eta(t) \leftrightarrow \mathcal{N}(s)$$
$$H(s) = \frac{\mathcal{A}_u(s)}{\mathcal{N}(s)} \qquad \text{definition}$$

$$H(s) = \frac{1}{1 - (1 - \gamma)e^{-s\tau}}$$

Gain fluctuations – output is v(t)

The low-pass has only 2nd order effect on AM

$$\mathcal{A}_{u}(s) \begin{bmatrix} 1 - (1 - \gamma)e^{-\imath\omega\tau} \end{bmatrix} = \mathcal{N}(s)$$

starting equation

$$\mathcal{A}_{u}(s) = \frac{\mathcal{A}_{v}(s) - \mathcal{N}(s)}{1 - \gamma}$$

$$[1 + (1 - \gamma)(1 - e^{-s\tau})] \mathcal{A}_{v}(s) = [1 - (1 - \gamma)e^{-s\tau}] \mathcal{N}(s)$$

$$\mathbf{H}(s) = \frac{\mathcal{A}_{v}(s)}{\mathcal{N}(s)} \qquad \text{definition}$$

$$\mathbf{H}(s) = \frac{1 + (1 - \gamma) (1 - e^{-s\tau})}{1 - (1 - \gamma)e^{-s\tau}} \mathbf{result}$$

boring algebra relates α_v to α_u

$$\begin{aligned} v &= Au \\ A &= -\gamma(u-1) + 1 + \eta \\ v &= \left[-\gamma(u-1) + 1 + \eta \right] u \quad \text{use u=a+1} \\ v &= \left[-\gamma\alpha_u + 1 + \eta \right] \left[1 + \alpha_u \right] \\ \cancel{X} + \alpha_v &= \cancel{X} + \eta - \gamma\alpha_u + \alpha_u - \alpha_u \eta - \gamma\alpha_u^2 \\ \alpha_v &= (1 - \gamma)\alpha_u + \eta \quad \text{linearization} \\ \alpha_u &= \frac{\alpha_v - \eta}{1 - \gamma} \end{aligned}$$

A C ()

Opto-electronic oscillator

Opto-electronic oscillator simulation

AM & PM spectra were anticipated

- Figures are © IEEE
- Prediction is based on the stochastic diffusion (Langevin) theory
- However complex, the Langevin theory provides an independent check

Y.K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, P. Colet, & al., IEEE J. Quant. Electron. 45(2) p.178-186, Feb 2009

Parametric noise & AM-PM noise coupling

51

E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

Effect of AM-PM noise coupling⁵²

E. Rubiola & R. Brendel, arXiv:1004.5539v1 [physics.ins-det]

Noise transfer function and spectra

Notice that the AM-PM coupling can increase or decrease the PM noise

In a real oscillator, flicker noise shows up below some 10 kHz In the flicker region, all plots are multiplied by 1/f

A. Savchenkov & al, Opt. Lett 35(10) 1572-74, 15 may 2010, Fig.2

Unfortunately, the awareness of this model come after the end of the experiments

Spectrum from K. Volyanskiy & al., IEEE JLT (Submitted, Apr. 2010)

X.S.Yao & al., NASA TMO Report 42-135 (1998), Fig. 6

Oscillator Hacking

Analysis of commercial oscillators

The purpose of this section is to help to understand the oscillator inside from the phase noise spectra, plus some technical information. I have chosen some commercial oscillators as an example.

The conclusions about each oscillator represent only my understanding based on experience and on the data sheets published on the manufacturer web site.

You should be aware that this process of interpretation is not free from errors. My conclusions were not submitted to manufacturers before writing, for their comments could not be included.

Amplifier white and flicker noise

The corner frequency *f*_c, sometimes specified in data sheets is a misleading parameter because it depends on P₀

Miteq D210B, 10 GHz DRO

From the table $\sigma^2_y = h_0/2\tau + 2\ln(2)h_{-1}$ $h_0 = b_{-2}/v_0^2$ $h_{-1} = b_{-3}/v_0^2$

- kT₀ = 4×10⁻²¹ W/Hz (-174 dBm/Hz)
- floor –146 dBrad²/Hz, guess F = 1.25 (1 dB) => P₀ = 2 μW (–27 dBm)
- $f_L = 4.3 \text{ MHz}, f_L = v_0/2Q \implies Q = 1160$
- $f_c = 70 \text{ kHz}, \ b_{-1}/f = b_0 \implies b_{-1} = 1.8 \times 10^{-10} (-98 \text{ dBrad}^2/\text{Hz}) \text{ [sust.ampli]}$
- $h_0 = 7.9 \times 10^{-22}$ and $h_{-1} = 5 \times 10^{-17} = \sigma_y = 2 \times 10^{-11} / \sqrt{\tau} + 8.3 \times 10^{-9}$

Poseidon* Scientific Instruments – Shoebo¹ 10 GHz sapphire whispering-gallery (1)

an independent

as

exists

PSI no longer

Now with Raytheon?

ompany.

 $f_L = v_0/2Q = 2.6 \text{ kHz} \implies Q = 1.8 \times 10^6$

This incompatible with the resonator technology. Typical Q of a sapphire whispering gallery resonator: 2×10⁵ @ 295K (room temp), 3×10⁷ @ 77K (liquid N), 4×10⁹ @ 4K (liquid He). In addition, d ~ 6 dB does not fit the power-law.

The interpretation shown is wrong, and the Leeson frequency is somewhere else

Poseidon Scientific Instruments – Shoebox² 10 GHz sapphire whispering-gallery (2)

The 1/f noise of the output buffer is higher than that of the sustaining amplifier (a complex amplifier with interferometric noise reduction / or a Pound control)

In this case both 1/f and 1/f² are present

white noise –169 dBrad²/Hz, guess F = 5 dB (interferometer) => P₀ = 0 dBm buffer flicker –120 dBrad²/Hz @ 1 Hz => good microwave amplifier $f_L = v_0/2Q = 25$ kHz => $Q = 2 \times 10^5$ (quite reasonable) $f_c = 850$ Hz => flicker of the interferometric amplifier –139 dBrad²/Hz @ 1 Hz

⁶³ 10 GHz dielectric resonator oscillator (DRO)

- floor –165 dBrad²/Hz, guess F = 1.25 (1 dB) => P₀ = 160 μW (–8 dBm)
- $f_{L} = 3.2 \text{ MHz}, f_{L} = v_{0}/2Q \implies Q = 625$
- f_c = 9.3 kHz, b₋₁/f = b₀ => b₋₁ = 2.9×10⁻¹³ (-125 dBrad²/Hz) [sust.ampli, too low]

Slopes are not in agreement with the theory

Example – Oscilloquartz 8600 (wrong)

1 − floor $S_{\phi 0} = -155 \text{ dBrad}^2/\text{Hz}$, guess F = 1 dB \rightarrow P₀ = -18 dBm

2 – ampli flicker $S_{\phi} = -132 \text{ dBrad}^2/\text{Hz} @ 1 \text{ Hz} \rightarrow$ good RF amplifier

 $3 - \text{merit factor } Q = v_0/2f_L = 5 \cdot 10^6/5 = 10^6$ (seems too low)

4 - take away some flicker for the output buffer:

* flicker in the oscillator core is lower than -132 dBrad²/Hz @ 1 Hz

* fL is higher than 2.5 Hz

* the resonator Q is lower than 10⁶

This is inconsistent with the resonator technology (expect $Q > 10^6$).

The true Leeson frequency is lower than the frequency labeled as fL

The 1/f³ noise is attributed to the fluctuation of the quartz resonant frequency

Example – Oscilloquartz 8600 (trusted)

 $S_{\phi}(f) dBrad^2/Hz$

F=1dB b₀ **=> P**₀**=**-18 **dBm**

Whispering gallery oscillator, liquid-N₂ temp

The figure is from E. Rubiola, Phase noise and

Example – Oscilloquartz 8607

 $S_{\phi}(f) dBrad^2/Hz$

F=1dB b₀ => P₀=-20 dBm

Example – CMAC Pharao

 $S_{\phi}(f) dBrad^2/Hz$

 $F=1dB b_0 => P_0 = -20.5 dBm$

Example – FEMTO-ST prototype

 $F=1dB \ b_0 => P_0 = -26 \ dBm$

(there is a problem)

 $(b_{-3})_{osc} \implies \sigma_y = 1.7 \times 10^{-13}, Q = 5.4 \times 10^5 \text{ (too low)}$ Q=1.15x10⁶ => $\sigma_y = 8.1 \times 10^{-14}$ Leeson (too low)

Example – Agilent 10811

 $F=1dB b_0 \implies P_0=-11 dBm$

The figure is from E. Rubiola, Phase noise

© Cambridge University Press

and frequency stability in oscillators,

© Agilent.

The spectrum is

Example – Agilent prototype

F=1dB b₀ => P₀=-12 dBm

The figure is from E. Rubiola, Phase noise and

© Cambridge University Press

frequency stability in oscillators,

© IEEE.

<u>.</u>

The spectrum

Interpretation of S_{\phi}(f)

Only quartz-crystal oscillators

E. Rubiola – Phase noise and frequency stability in oscillators Cambridge University Press 2008 – ISBN 978–0–521–88677–2

ty in oscillators -0-521-88677-2 after parametric estimation

File: 602a-xtal-interpretation

Sanity check: – power P₀ at amplifier input – Allan deviation σ_y (floor)

2–3 buffer stages => the sustaining amplifier contributes ≤ 25% of the total 1/f noise

[1]

real phase-noise spectrum

Frequency [Hz
Interpretation of S_{\phi}(f) [2]

73

Only quartz-crystal oscillators

E. Rubiola – Phase noise and frequency stability in oscillators Cambridge University Press 2008 – ISBN 978–0–521–88677–2

File: 602b-xtal-interpretation

Technology suggests a quality factor Q_t . In all xtal oscillators we find $Q_t \gg Q_s$

Example – Wenzel 501-04623

Data are from the manufacturer web site. Interpretation and mistakes are of the authors.

Estimating (b₋₁)_{ampli} is difficult because there is no visible 1/f region

 $F=1dB \ b_0 => P_0=0 \ dBm$

Rubiola, Phase noise and frequency

Figures are from E. Rubiola, Phase noise and frequency stability in oscillators, © Cambridge University Press

 $\Rightarrow \sigma_y = 5.3 \times 10^{-12} \text{ Q} = 1.4 \times 10^4$ (**b**₋₃)_{osc} $Q^{2}=8x10^{4} \Rightarrow \sigma_{y}=9.3x10^{-13}$ (Leeson)

Quartz-oscillator summary

Oscillator	$ u_0$	$(b_{-3})_{ m tot}$	$(b_{-1})_{ m tot}$	$(b_{-1})_{\mathrm{amp}}$	f'_L	f_L''	Q_s	Q_t	f_L	$(b_{-3})_{ m L}$	R	Note
Oscilloquartz 8600	^z 5	-124.0	-131.0	-137.0	2.24	4.5	5.6×10^{5}	1.8×10^{6}	1.4	-134.1	10.1	(1)
Oscilloquartz 8607	^z 5	-128.5	-132.5	-138.5	1.6	3.2	7.9×10^{5}	2×10^{6}	1.25	-136.5	8.1	(1)
Rakon Pharao	5	-132.0	-135.5	-141.1	1.5	3	8.4×10^{5}	2×10^{6}	1.25	-139.6	7.6	(2)
FEMTO-ST LD prot.	10	-116.6	-130.0	-136.0	4.7	9.3	5.4×10^{5}	1.15×10^{6}	4.3	-123.2	6.6	(3)
Agilent 10811	10	-103.0	-131.0	-137.0	25	50	1×10^{5}	7×10^{5}	7.1	-119.9	16.9	(4)
Agilent prototype	10	-102.0	-126.0	-132.0	16	32	1.6×10^{5}	7×10^{5}	7.1	-114.9	12.9	(5)
Wenzel 501-04623	100	-67.0	-132?	-138?	1800	3500	1.4×10^{4}	8×10^{4}	625	-79.1	15.1	(6)
unit	MHz	$dB \\ rad^2/Hz$	$dB \\ rad^2/Hz$	$dB \\ rad^2/Hz$	Hz	Hz	(none)	(none)	Hz	$dB rad^2/Hz$	dB	

Notes

(1) Data are from specifications, full options about low noise and high stability.

(2) Measured by Rakon on a sample. Rakon confirmed that $2 \times 10^6 < Q < 2.2 \times 10^6$ in actual conditions.

(3) LD cut, built and measured in our laboratory, yet by a different team. Q_t is known.

(4) Measured by Hewlett Packard (now Agilent) on a sample.

(5) Implements a bridge scheme for the degeneration of the amplifier noise. Same resonator of the Agilent 10811.

(6) Data are from specifications.

$$R = \frac{(\sigma_y)_{\text{oscill}}}{(\sigma_y)_{\text{Leeson}}}\Big|_{\text{floor}} = \sqrt{\frac{(b_{-3})_{\text{tot}}}{(b_{-3})_L}} = \frac{Q_t}{Q_s} = \frac{f_L''}{f_L}$$

Courtesy of OEwaves (handwritten notes are mine). Cut from the oscillator specifications available at the URL http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf

77

Courtesy of OEwaves (handwritten notes are mine). Cut from the oscillator specifications available at the URL http://www.oewaves.com/products/pdf/TDALwave_Datasheet_012104.pdf

78

Courtesy of OEwaves, notes are mine

79

Opto-electronic oscillator (amplifier)

Opto-electronic oscillator simulation

Things may not be that simple

Conclusions

Phase noise and frequency stability in oscillators

THE CAMBRIDGE RF AND MICROWAVE ENGINEERING SERIES

Phase Noise and Frequency Stability in Oscillators

Cambridge University Press, November 2008 ISBN 978-0-521-88677-2 hardback

ISBN 978-0-521-15328-7 paperback ISBN 978-1-139-23940-0 eBook

Contents

- Forewords (L. Maleki, D. B. Leeson)
- Phase noise and frequency stability
- Phase noise in semiconductors & amplifiers
- Heuristic approach to the Leson effect
- Phase noise and feedback theory
- Noise in delay-line oscillators and lasers
- Oscillator hacking
- Appendix

E. Rubiola Experimental methods in AM-PM noise metrology — book project —

Front cover: The Wind Machines Artist view of the AM and PM noise Courtesy of Roberto Bergonzo, http://robertobergonzo.com

Acknowledgements

I am grateful to Lute Maleki and to John Dick for numerous discussions during my visits at the NASA JPL, which are the first seed of my approach to the oscillator noise

I am indebted to a number of colleagues and friends for invitations and stimulating discussions

- dr. Tim Berenc, ANL, Argonne
- dr. Holger Schlarb, DESY, Hambourg
- prof. Theodor W. Hänsch and dr. Thomas Udem, MPQ, München

This material would never have existed without continuous discussions, help and support of Vincent Giordano, FEMTO-ST, over about 15 years

This presentation is based on

E.Rubiola, Phase noise and frequency stability in oscillators, Cambridge 2008,

and on the complementary material

E. Rubiola, R. Brendel, A generalization of the Leeson effect, arXiv:1004.5539 [physics.ins-det]

Please visit my home page http://rubiola.org

Dave and Enrico at the end of a tutorial IEEE Frequency Control Symposium, S. Francisco, Ca, 1–5 May 2011 Photo by Barbara Leeson, Dave's wife

Summary of relevant points

- The Leeson effect consists in a phase-to-frequency conversion
 - fully explained as a phase (noise) integration
 - takes place below $f_L = v_0/2Q$
- The step response provides analytical solutions and physical inside. (Same formalism introduced by Oliver. Heaviside in network theory)
- Buffer noise and resonator instability add to the Leeson effect
- Amplifier phase noise
 - white noise: S_{φ} scales down as the carrier power P_0
 - flicker noise: S_{φ} is independent of P_0
- Numerous oscillator spectra can be interpreted successfully
- The amplitude-noise response is similar to phase noise, but gain compression provides stabilization at low frequencies
- The theory indicates that amplitude-phase coupling results in a deviation from the polynomial law
- Unified AM/PM noise that applies to resonator-oscillators and to delay-line oscillators, including optical oscillators

A bunch of free material is available on my home page http://rubiola.org