

The magic of cross-spectrum measurements from DC to optics

E. Rubiola FEMTO-ST Institute, CNRS and Université de Franche Comté

Outline

1. Theory

- Basics
- Rejection of the background noise
- Examples

2. Applications

- Radio-astronomy, radiometry, and thermometry
- AM-PM noise
- Other applications

home page http://rubiola.org

Part 1 – Theory

The main idea

- Two instruments measure independently the same physical quantity
- Averaging must help to reject the instrument noise, and measure the statistical properties of the signal

Notation: Fourier transform x(t) <=> X(ıf) = X'(ıf)+ ıX"(ıf)

Ergodicity

FFT => sequence of discrete spectra

white noise: $S(f_1)$ and $S(f_2)$, $f_1 \neq f_2$, are uncorrelated, hence given i, S_k can be seen as the ensemble (at a given time)

Ergodicity allows to interchange time-statistics with ensemble statistics.

Sweeping the frequency, we get the statistical behavior of the time series. No need for forthcoming samples. Useful when S is a large-size average.

flicker noise: need $f_1 \neq f_2$, for S(f₁) and S(f₂), to be uncorrelated (less deg. of freedom)

Single-channel spectrum Sxx

gaussian X with independent Re and Im

$$\frac{\text{dev}}{\text{avg}} = \sqrt{\frac{1}{m}}$$
 the S_{xx} track on the FFT-SA shrinks as 1/m^{1/2}

Normalization: in 1 Hz bandwidth $var{X} = 1$, and $var{X'} = var{X''} = 1/2$

Syx with correlated term C≠0 (1)

gaussian A, B, C with independent Re and Im

Cross-spectrum $\langle S_{yx} \rangle_m = \langle YX^* \rangle_m$ = $\langle (Y' + iY'') \times (X' - iX'') \rangle_m$ = $\langle [Y'X' + Y''X''] + i [Y''X' - Y'X''] \rangle_m$

Expand X = (A' + iA'') + (C' + iC'') and Y = (B' + iB'') + (C' + iC'')

Split
$$\langle S_{yx} \rangle_m = \langle S_{yx} \rangle_m \Big|_{\text{instr}} + \langle S_{yx} \rangle_m \Big|_{\text{mixed}} + \langle S_{yx} \rangle_m \Big|_{\text{DUT}}$$

#1
$$\langle S_{yx} \rangle_m \Big|_{\text{instr}} = \langle B'A' + B''A'' \rangle_m + \imath \langle B''A' + B'A'' \rangle_m$$

#2 $\langle S_{yx} \rangle_m \Big|_{\text{mixed}} = \langle B'C' + B''C'' + C'A' + C''A'' \rangle_m + i \langle B''C' - B'C'' + C''A' - C'A'' \rangle_m$

#3
$$\langle S_{yx} \rangle_m \Big|_{\text{DUT}} = \langle (C')^2 + (C'')^2 \rangle_m$$

The useful signal C is real, the noise terms are complex. Take Re{S_{yx}} (Yet there can be some risk!)

Normalization: in 1 Hz bandwidth $var{A} = var{B} = 1$, $var{C}=\kappa^2$ hence $var{A'} = var{A''} = var{B'} = var{B''} = 1/2$, and $var{C'} = var{C''} = \kappa^2/2$

Syx with correlated term C≠0 (2)

gaussian A, B, C with independent Re and Im

hence $var{A'} = var{A''} = var{B'} = var{B''} = 1/2$, and $var{C'} = var{C''} = \kappa^2/2$

Detection, and noise-rejection law

Gaussian X, Y, independent (C=0). Re and Im are independent

and $var{X'} = var{X''} = var{Y'} = var{Y''} = 1/2$

Noise rejection, |Syx| and |Re{Syx}|

Independent X and Y, var{X} = var{Y}= 1/2

The track thickness on the analyzer logarithmic scale is constant because the dev / avg ratio is independent of m

Example: Measurement of |Syx|

Measurement (C≠0), |Syx|

Running the measurement, m increases S_{xx} shrinks => better confidence level S_{yx} decreases => higher single-channel noise rejection

Measurement (C≠0), |Re{Syx}|

Running the measurement, m increases S_{xx} shrinks => better confidence level S_{yx} decreases => higher single-channel noise rejection

Linear vs. logarithmic resolution

Fig.5, G. Cibiel, TUFFC 49(6) jun 2002

Fig.7, E. Rubiola, V. Giordano, RSI 73(6) jun 2002

Part 2 – Applications

Applications

- Radio-astronomy (Hanbury-Brown, 1952)
- Early implementations
- Radiometry (Allred, 1962)
- Noise calibration (Spietz, 2003)
- Frequency noise (Vessot 1964)
- Phase noise (Walls 1976)
- Phase noise (Lance, 1982)
- Phase noise (Rubiola 2000 & 2002))
- Effect of amplitude noise (Rubiola, 2007)
- Dual-mixer time-domain instrument (Allan 1975, Stein 1983)
- Amplitude noise & laser RIN (Rubiola 2006)
- Semiconductors (Sampietro RSI 1999)
- Electromigration in thin films (Stoll 1989)
- Fundamental definition of temperature
- Hanbury Brown Twiss effect (Hanbury-Brown & Twiss 1956, Glattli 2004)

Radio-astronomy

Cassiopeia

Measurement of the apparent angular size of stellar radio sources Jodrell Bank, Manchester

- The radio link breaks the hypothesis of symmetry of the two channels, introducing a phase θ
- The cross spectrum is complex
- The the antenna directivity results from the phase relationships
- The phase of the cross spectrum indicates the direction of the radio source

R. Hanbury Brown & al., Nature 170(4338) p.1061-1063, 20 Dec 1952 R. Hanbury Brown, R. Q. Twiss, Phyl. Mag. ser.7 no.366 p.663-682

Early implementations

1940-1950 technology

Analog correlator

Analog multiplier

Spectral analysis at the single frequency f₀, in the bandwidth B Need a filter pair for each Fourier frequency

Radiometry

correlation and anti-correlation

noise comparator

C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962

Noise calibration

thermal noiseS = kTshot noise $S = 2qI_{avg}R$

high accuracy of I_{avg} with a dc instrument

Compare shot and thermal noise with a noise bridge

This idea could turn into a redefinition of the temperature

Fig. 1. Theoretical plot of current spectral density of a tunnel junction (Eq. 3) as a function of dc bias voltage. The diagonal dashed lines indicate the shot noise limit, and the horizontal dashed line indicates the Johnson noise limit. The voltage span of the intersection of these limits is $4k_{\rm B}T/e$ and is indicated by vertical dashed lines. The bottom inset depicts the occupancies of the states in the electrodes in the equilibrium case, and the top inset depicts the out-of-equilibrium case where $eV \gg k_{\rm B}T$.

In a tunnel junction, theory predicts the amount of shot and thermal noise

L. Spietz & al., Primary electronic thermometry using the shot noise of a tunnel junction, Science 300(20) p. 1929-1932, jun 2003

²⁰ Measurement of H-maser frequency noise

R. F. C. Vessot, Proc. Nasa Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964

Phase noise measurement

(relatively) large correlation bandwidth provides low noise floor in a reasonable time

F.L. Walls & al, Proc. 30th FCS pp.269-274, 1976 popular after W. Walls, Proc. 46th FCS pp.257-261, 1992

Oscillator phase noise measurement

Original idea: D. Halford's NBS notebook F10 p.19-38, apr 1975

First published: A. L. Lance & al, CPEM Digest, 1978

The delay line converts the frequency noise into phase noise

The high loss of the coaxial cable limits the maximum delay

Updated version: The optical fiber provides long delay with low attenuation (0.2 dB/km or 0.04 dB/µs)

Phase noise measurement

background noise

noise of a by-step attenuator

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000 E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002

Effect of amplitude noise

Should set both channels at the sweet point, if exists

The delay de-correlates the two inputs, so there is no sweet point

Should set both channels at the sweet point of the RF input, if exists, by offsetting the PLL or by biasing the IF

The effect of the AM noise is strongly reduced by the RF amplification

pink: noise rejected by correlation and averaging

E. Rubiola, R. Boudot, IEEE Transact. UFFC 54(5) pp.926-932, may 2007

Dual-mixer time-domain instrument

The average process rejects the mixer noise This scheme is equivalent to the correlation method

S. Stein & al., IEEE Transact. IM 32(1) p.227-230, mar 1983

Amplitude noise & laser RIN

AM noise of photonic RF/microwave sources

E. Rubiola, the measurement of AM noise, dec 1995 arXiv:physics/0512082v1 [physics.ins-det]

- In PM noise measurements, one can validate the instrument by feeding the same signal into the phase detector
- In AM noise this is *not possible* without a lower-noise reference
- Provided the crosstalk was measured otherwise, correlation enables to validate the instrument

Measurement of noise in semiconductors

FIG. 2. Schematics of the building blocks of our correlation spectrum analyzer performing the suppression of the uncorrelated input noises by a digital processing of sampled data.

27

FIG. 9. Experimental frequency spectrum of the current noise from DUT resistances of 100 k Ω and 500 M Ω (continuous line) compared with the limits (dashed line) given by the instrument and set by residual correlated noise components.

FIG. 3. Schematics of the active test fixture for current noise measurements.

M. Sampietro & al, Rev. Sci. Instrum 70(5) p.2520-2525, may 1999

Electromigration in thin films

Fig. 1 1/f noise of an AlSi_{0.01}Cu_{0.002} thin film measured at room temperature (a) without and (b) with the phase-sensitive ac correlation technique. The Johnson noise level is indicated by the dashed line.

- Random noise: X' and X" (real and imag part) of a signal are statistically independent
- The detection on two orthogonal axes eliminates the amplifier noise. This work with a single amplifier!
- The DUT noise is detected

$$S_{ud}(f) = \frac{1}{2} \left[S_{\alpha}(f) - S_{\varphi}(f) \right]$$

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, proc. ICNF p.162-167, Hong Kong 23-26 aug 1999 RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003

Hanbury Brown - Twiss effect

in single-photon regime, anti-correlation shows up

R. Hanbury Brown, R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177(27), 1956

Also observed at microwave frequencies

C. Glattli & al. (2004), arXiv:cond-mat/0403584v1 [cond-mat.mes-hall]

 $kT = 2.7 \times 10^{-25} J$, $hv = 1.12 \times 10^{-24} J$, kT/hv = -6.1 dB

Conclusions

- Correlation enables the rejection of the instrument noise
- In AM noise, RIN, etc., correlation enables the validation of the instrument without a reference low-noise source
- Display quantities
 - <Re{Syx}>_m is faster and more accurate
 - |<Re{Syx}>_m| and |<Syx>_m| provide easier readout
- Applications in many fields of metrology

The cross spectrum method is magic

Correlated noise sometimes makes magic difficult

home page http://rubiola.org

Part A-1 – The FFT analyzer

Fourier transform

Transform – inverse-transform pair

 $X(if) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \qquad \leftrightarrow \qquad x(t) = \int_{-\infty}^{\infty} X(if) e^{i2\pi ft} df$

Convolution integral

 $y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$

Time-convolution theorem

 $x(t) * h(t) \qquad \leftrightarrow \qquad X(\imath f) H(\imath f)$

Frequency-convolution theorem

$$x(t) h(t) \qquad \leftrightarrow \qquad X(\imath f) * H(\imath f)$$

Dirac delta function

$$x(t) * \delta(t - t_0) = \int_{-\infty}^{\infty} x(t) \,\delta(t - t_0) \,dt = x(t_0)$$

Normalization

Commonly used quantities

quantity	physical dimension	purpose
$X_T(\imath f)$	V/Hz	Two-sided FT Theoretical issues
$S^{I}(f) = \frac{2}{T} X_{T}(if) ^{2}, f > 0$	V^2/Hz or W/Hz	One-sided PSD Measurement of noise level (power spectral density)
$\frac{\frac{1}{T}S^{I}(f)}{\frac{2}{T^{2}} X_{T}(if) ^{2}}, f > 0$	$V^2 \text{ or } W$	One-sided PS Power measurement of carriers (sinusoidal signals)

Truncated signal
$$X_T(if) = \int_{-T/2}^{T/2} x(t) e^{-i2\pi ft} dt$$

Fourier transform pairs

Fourier transform pairs

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

Sampling and aliasing

Truncation and energy leakage

Fitting the Fourier transform into a computer memory

Time domain

Frequency domain

Windowing – the problem

Windowing – solution

Window functions

Weighting Function Nomenclature	Time Domain	Frequency Domain	Highest Side-Lobe Level (db)	3-dB Bandwidth	Asymptotic Rolloff (dB/Octave)
Rectangular	$w_R(t) = 1$ $ t \le \frac{T_0}{2}$ = 0 $ t > \frac{T_0}{2}$	$W_R(f) = \frac{T_0 \sin(\pi f T_0)}{\pi f T_0}$	-13	$\frac{0.85}{T_0}$	6
Bartlett (triangle)	$w_B(t) = \left[1 - \frac{2 t }{T_0}\right] \qquad t < \frac{T_0}{2}$ $= 0 \qquad t > \frac{T_0}{2}$	$W_B(f) = \frac{T_0}{2} \left[\frac{\sin\left(\frac{\pi}{2} f T_0\right)}{\frac{\pi}{2} f T_0} \right]^2$	- 26	$\frac{1.25}{T_0}$	12
Hanning (cosine)	$w_{H}(t) = \cos^{2}\left(\frac{\pi t}{T_{0}}\right)$ $= \frac{1}{2}\left[1 + \cos\left(\frac{2\pi t}{T_{0}}\right)\right] \qquad t \le \frac{T_{0}}{2}$ $= 0 \qquad t > \frac{T_{0}}{2}$	$W_H(f) = \frac{T_0}{2} \frac{\sin(\pi f T_0)}{\pi f T_0 [1 - (f T_0)^2]}$	- 32	$\frac{1.4}{T_0}$	18
Parzen	$w_{P}(t) = 1 - 24 \left(\frac{t}{T_{0}}\right)^{2} + 48 \left \frac{t}{T_{0}} \right ^{3} t < \frac{T_{0}}{4}$ $= 2 \left[1 - \frac{2 t }{T_{0}} \right]^{3} \qquad \frac{T_{0}}{4} < t < \frac{T_{0}}{2}$ $= 0 \qquad t \ge \frac{T_{0}}{2}$	$W_P(f) = \frac{3T_0}{8} \left[\frac{\sin(\pi f T_0/4)}{\pi f T_0/4} \right]^4$	- 52	$\frac{1.82}{T_0}$	24

Spectrum of the quantization noise

 $\sigma^2 = \frac{V_q^2}{12}$

 V_{q}

p(x)

 $1/V_q$

The analog-to-digital converter introduces a quantization error x, $-V_q/2 \le x \le +V_q/2$

Ergodicity suggests that the quantization noise can be calculated statistically

$$\sigma^2 = \frac{V_q^2}{12}$$

The Parseval theorem states that energy and power can be evaluated by integrating the spectrum

$$NB = \frac{V_q^2}{12}$$

Changing B in geometric progression (decades) yields naturally 1/B (flicker) noise

$$N = \frac{V_q^2}{12B}$$

Noise of the real FFT analyzer

The quantization noise scales with the frequency span, the front-end noise is constant

The energy is equally spread in the full FFT bandwidth, including the upper region not displayed because of aliasing

Example of FFT analyzer noise

Experimental observation

Theoretical evaluation

DAC 12 bit resolution, including sign

range 10 mV_{peak} V_{fsr} = 20 mV (±10 mV)

resolution V_q = V_{fsr} / 2¹² = 4.88 μV

total noise $\sigma^2 = (4.88 \ \mu V)^2 / 12$ $= 2 \times 10^{-12} \ V^2 \ (-117 \ dB)$

quantization noise PSD

 $\int_{C} Hr S_v = \sigma^2 / B$ = -117 dBV²/Hz with B = 1 Hz (etc.)

Front-end noise, evaluated from the plot

 $S_v = 2 \times 10^{-15}$ V² (-150 dB), at 10–100 kHz or 45 nV/Hz^{1/2}

use Sv = 4kTR R = 125 k Ω or R = 100 k Ω and F = 1 dB (noise figure)

Oscillator noise measurement

- A tight loop is preferred because:
- reduces the required dynamic range
- overrides (parasitic) injection locking

FFT noise in oscillator measurements

Explanation: the steps occurring at the transition between decades are due the quantization noise, when the resolution is insufficient

calculated

simulated

The steps are due to the FFT quantization noise

The problem shows up when the dynamic range is insufficient, often in the presence of large stray signals

Systematic errors are also possible at high Fourier frequencies

Linear vs. logarithmic resolution

Linear resolution

Logarithmic resolution (80 pt/dec)

Combining M independent values, the confidence interval is reduced by sqrt(M), (5 dB left-right in one decade)

A weighted average is also possible

Part A-2 – Statistics

Properties of white zero-mean gaussian noise

$x(t) \iff X(if) = X'(if) + iX''(if)$

1. x(t) <=> X(If) are gaussian

- 2. X(If₁) and X(If₂) are uncorrelated var{X(If₁)} = var{X(If₂)}
- 3. X' and X'' are uncorrelated var{X'} = var{X''} = var{X}/2
- 4. Y = X₁ + X₂ is gaussian var{Y} = var{X₁} + var{X₂}
- 5. Y = X₁ × X₂ is gaussian var{Y} = var{X₁} var{X₂}

Properties of flicker noise x(t) <=> X(If) = X'(If)+IX"(If)

- 1. x(t) <=> X(ıf), there is no a-priori relationship between the distribution of x(t) and X(ıf) (theorem). Central limit theorem => X(ıf) can be gaussian
- 2. X(If₁) and X(If₂) are correlated. correlation decays rapidly when f₁ ≠≠ f₂ var{X(If₁)} ≠ var{X(If₂)}
- 3. X' and X" can be correlated var{X'} ≠ var{X"} ≠ var{X}/2

- 4. Y = X₁ + X₂, with zero-mean X₁, X₂, var{Y} = var{X₁} + var{X₂}
- 5. If X₁ and X₂ are zero-mean gaussian r.v. then Y = X₁ × X₂ is zero-mean gaussian and var{Y} = var{X₁} var{X₂}

One-sided gaussian distribution

x is normal distributed with zero mean and variance σ^2 y = |x|

_					
	$f(x) = 2\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\right)$	$\frac{x^2}{2\sigma^2}\right) y \ge 0$			
	$\mathbb{E}\{f(x)\} = \sqrt{\frac{2}{\pi}} \sigma$				
	$\mathbb{E}\{f^2(x)\} = \sigma^2$				
	$\mathbb{E}\{ f(x) - \mathbb{E}\{f(x)\} ^2\} =$	$\left(1-\frac{2}{\pi}\right)\sigma^2$			
	one-sided gaussian distribution	with $\sigma^2 = 1/2$			
	quantity with $\sigma^2 = 1/2$	value $[10 \log(), dB]$			
	average = $\sqrt{\frac{1}{\pi}}$	$0.564 \\ [-2.49]$			
	deviation = $\sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$0.426 \\ [-3.70]$			
	$\frac{\mathrm{dev}}{\mathrm{avg}} = \sqrt{\frac{\pi}{2} - 1}$	$0.756 \\ [-1.22]$			
	$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg}} = 1 + \sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$1.756 \\ [+2.44]$			
	$\frac{\operatorname{avg} - \operatorname{dev}}{\operatorname{avg}} = 1 - \sqrt{\frac{1}{2} - \frac{1}{\pi}}$	$0.244 \\ [-6.12]$			
	$\frac{\text{avg} + \text{dev}}{\text{avg} - \text{dev}} = \frac{1 + \sqrt{1/2 - 1/\pi}}{1 - \sqrt{1/2 - 1/\pi}}$	7.18 $[8.56]$			

Chi-square distribution

 x_i are normal distributed with zero mean and equal variance σ^2

 $\chi^2 = \sum_{i=1}^r x_i^2$

V

is χ^2 distributed with r degrees of freedom

$$f(x) = \frac{x^{\frac{r}{2}-1} e^{-\frac{x^2}{2}}}{\Gamma(\frac{1}{2}r) 2^{\frac{r}{2}}} \quad x \ge 0$$
$$\mathbb{E}\{f(x)\} = \sigma^2 r$$
$$\mathbb{E}\{[f(x)]^2\} = \sigma^4 r(r+2)$$
$$\mathbb{E}\{|f(x) - \mathbb{E}\{f(x)\}|^2\} = 2\sigma^4 r$$
$$z! = \Gamma(z+1), \quad z \in \mathbb{N}$$

Averaging m chi-square distributions

averaging m variables $|X|^2$, complex X=X'+1X", yields a χ^2 distribution with r = 2m

Rayleigh distribution

Rayleigh distribution with $\sigma^2 = 1/2$			
$\begin{array}{c} \text{quantity} \\ \text{with } \sigma^2 = 1/2 \end{array}$	value $[10 \log(), dB]$		
average = $\sqrt{\frac{\pi}{4}}$	$ \begin{array}{c} 0.886 \\ [-0.525] \end{array} $		
deviation = $\sqrt{1 - \frac{\pi}{4}}$	$0.463 \\ [-3.34]$		
$\frac{\mathrm{dev}}{\mathrm{avg}} = \sqrt{\frac{4}{\pi} - 1}$	$0.523 \\ [-2.82]$		
$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg}} = 1 + \sqrt{\frac{4}{\pi} - 1}$	$1.523 \\ [+1.83]$		
$\frac{\operatorname{avg} - \operatorname{dev}}{\operatorname{avg}} = 1 - \sqrt{\frac{4}{\pi} - 1}$	0.477 [-3.21]		
$\frac{\operatorname{avg} + \operatorname{dev}}{\operatorname{avg} - \operatorname{dev}} = \frac{1 + \sqrt{4/\pi - 1}}{1 - \sqrt{4/\pi - 1}}$	3.19 [5.04]		

