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Part 1  –  Theory
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The main idea
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• Two instruments measure independently the same 
physical quantity

• Averaging must help to reject the instrument noise, 
and measure the statistical properties of the signal

Notation: Fourier transform
x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

Σ
x = a + c

c(t)

C
O
R
R
E
L
A
T
O
R

y = b + c

a(t) instr.
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DUT



Ergodicity
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FFT => sequence of discrete spectra

white noise: S(f1) and S(f2), f1≠f2, are uncorrelated, hence

given i, Sk can be seen as the ensemble (at a given time)

integer time

integer frequency

lock j=J & run k:   SJk is a spectrum

run j & lock k=K:  SjK is a time series frequency k
tim

e j

S, dB

Ergodicity allows to interchange time-statistics with ensemble statistics.
Sweeping the frequency, we get the statistical behavior of the time series.
No need for forthcoming samples. Useful when S is a large-size average.

spectra seq.

Sjk 
analog

S(f)
sample no

Sj(f)

flicker noise: need f1≠≠f2, for S(f1) and S(f2), to be uncorrelated (less deg. of freedom)



Single-channel spectrum Sxx 
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Normalization: in 1 Hz bandwidth 
var{X} = 1,   and  var{X’} = var{X”} = 1/2

Spectrum

white, gaussian, 
avg = 0, var = 1/2

gaussian X with independent Re and Im

white, χ2, with 2m degrees of freedom
avg = 1, var = 1/m

the Sxx track on the 
FFT-SA shrinks as 1/m1/2

〈Sxx〉m = 〈XX∗〉m
= 〈(X ′ + ıX ′′)× (X ′ − ıX ′′)〉m
=

〈
(X ′)2 + (X ′′)2

〉
m

dev
avg

=
√

1
m



The useful signal C is real, the noise 
terms are complex.  Take Re{Syx}

(Yet there can be some risk!)

Syx with correlated term C≠0  (1)
6

Cross-spectrum

Expand

gaussian A, B, C with independent Re and Im

X = (A′ + ıA′′) + (C ′ + ıC ′′) and Y = (B′ + ıB′′) + (C ′ + ıC ′′)

〈Syx〉m
∣∣
instr

= 〈B′A′ + B′′A′′〉m + ı 〈B′′A′ + B′A′′〉m

〈Syx〉m
∣∣
mixed

= 〈B′C ′ + B′′C ′′ + C ′A′ + C ′′A′′〉m + ı 〈B′′C ′ − B′C ′′ + C ′′A′ − C ′A′′〉m

〈Syx〉m
∣∣
DUT

=
〈
(C ′)2 + (C ′′)2

〉
m

〈Syx〉m = 〈Syx〉m

∣∣
instr

+ 〈Syx〉m

∣∣
mixed

+ 〈Syx〉m

∣∣
DUTSplit

〈Syx〉m = 〈Y X∗〉m
= 〈(Y ′ + ıY ′′)× (X ′ − ıX ′′)〉m
= 〈[Y ′X ′ + Y ′′X ′′] + ı [Y ′′X ′ − Y ′X ′′]〉m

#1

#2

#3

Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

hence   var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2



Syx with correlated term C≠0  (2)
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Normalization: in 1 Hz bandwidth var{A} = var{B} = 1,  var{C}=κ2

hence   var{A’} = var{A”} = var{B’} = var{B”} = 1/2,  and  var{C’} = var{C”} = κ2/2

gaussian A, B, C with independent Re and Im

〈Syx〉m

∣∣
instr

= 〈B′A′ + B′′A′′〉m + ı 〈B′′A′ + B′A′′〉m

〈Syx〉m
∣∣
mixed

= 〈B′C ′ + B′′C ′′ + C ′A′ + C ′′A′′〉m + ı 〈B′′C ′ − B′C ′′ + C ′′A′ − C ′A′′〉m

〈Syx〉m

∣∣
DUT

=
〈
(C ′)2 + (C ′′)2

〉
m

white, gaussian, 
avg = 0, var = 1/2m

white, gaussian, 
avg = 0, var = 1/4

white, gaussian, 
avg = 0, var = κ2/4 white, gaussian, 

avg = 0, var = κ2/m

white, gaussian, 
avg = 0, var = 1/2κ2

white, χ2, with 2m deg. of freedom
avg = κ2, var = κ4/m

at large m the noise terms vanish, and the 
Syx track on the FFT-SA shrinks as 1/m1/2

#1

#2

#3

#3 dev
avg

=
√

1
m



white, gaussian, 
avg = 0, var = 1/2m

Detection, and noise-rejection law
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Normalization: in 1 Hz bandwidth var{X} = var{Y} = 1,
and  var{X’} = var{X”} = var{Y’} = var{Y”} = 1/2

Modulus

white, gaussian, 
avg = 0, var = 1/4

Gaussian X, Y, independent (C=0).  Re and Im are independent

white, gaussian
 

+ unbiased
+ fastest convergence
– can’t use log scale (dB!)

Real part

white, gaussian, 
avg = 0, var = 1/4

!
{
〈Syx〉m

}
= 〈Y ′X ′ + Y ′′X ′′〉m

white, 
one-sided gaussian,  

   
– biased 
= good convergence
+ can use log scale (dB!)

Abs Real part

white, gaussian, 
avg = 0, var = 1/4

∣∣!
{
〈Syx〉m

}∣∣ = |〈Y ′X ′ + Y ′′X ′′〉m|

| 〈Syx〉 |m =
√

[〈Y ′X ′〉m + 〈Y ′′X ′′〉m]2 + [〈Y ′′X ′〉m − 〈Y ′X ′′〉m]2

white, Rayleigh 
 

– biased 
– slowest convergence
+ can use log scale (dB!)

avg =
√

1
πm

var =
(

1
2
− 1

π

)
1
m

avg = 0

var =
1

2m

avg =
√

π

4m

var =
(
1− π

4

) 1
m



Noise rejection, |Syx| and |Re{Syx}|
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E{S} =
√

π

4m

Independent X and Y, var{X} = var{Y}= 1/2

|<Syx>m|  ~  – 5 log10(m) – 0.53 dB

average

deviation

the dev / avg ratio is independent of m

= 0.886/√m

= 0.523

The track thickness on the analyzer logarithmic scale is 
constant because the dev / avg ratio is independent of m

√
E

{
|S − E{S}|2

}
=

√(
1− π

4

) 1
m

√
E{|S − E{S}|2}

E{S} =
√

4
π
− 1

|<Re{Syx>m}|  ~  – 5 log10(m) – 2.49 dB

average

deviation

= 0.564/√m

= 0.756

E{S} =
√

1
πm

√
E

{
|S − E{S}|2

}
=

√(
1
2
− 1

π

)
1
m

√
E{|S − E{S}|2}

E{S} =
√

π

2
− 1

= √(0.215/m) = √(0.182/m)

|Syx|  =>  Rayleigh distribution |Re{Syx}|  =>  one-sided gaussian distrib.

the dev / avg ratio is independent of m



Example:
Measurement of |Syx|

10

! "! #! $! %! &!! &"! &#! &$! &%! "!!
!'!!&

!'!&

!'&

&

&!

()*+,-.+!/01!2"
3'456)7*89,8:;,"!!%

Sxx

Syx

m=32 ! = "(#/4m)
5 log(m) – 0.52 dB

! – "[(1-#/4)/m]
! – 3.21 dB

! + "[(1-#/4)/m]
! + 1.83 dB

fre
quen

cy

m, 2 0...2 10

|Syx|

fre
quen

cy

m, 2 0...2 10

|Syx|

C = 0

C ≠ 0

frequency
|S

yx
|



! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx||Syx|

m=1  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|
|Syx|

m=2  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|
|Syx|

m=4  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=8  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=16  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=32  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=64  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=128  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=256  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=512  g=0.32

|Scc|

frequency

! "! #!! #"! $!!
!%!!#

!%!#

!%#

#

#!

|Sxx|

|Syx|

m=1024  g=0.32

|Scc|

frequency # #! #!! #!!!
!%!#

!%#

#
average

deviation

|Syx|

m&'()*+,)-./0!+)1!##!#!$2!!3#4!05+678
9%:;5'<(0=*0,/*$!!>

Measurement (C≠0), |Syx|
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Running the measurement, m increases
Sxx shrinks => better confidence level

Syx decreases => higher single-channel noise rejection



Measurement (C≠0), |Re{Syx}|
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Running the measurement, m increases
Sxx shrinks => better confidence level

Syx decreases => higher single-channel noise rejection
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Linear vs. logarithmic resolution
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Fig.5, G. Cibiel, TUFFC 49(6) jun 2002 Fig.7, E. Rubiola, V. Giordano, RSI 73(6) jun 2002
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n–1 values
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Joining M values => background reduction of M1/2 because S(fj), S(fk), j!k are independent 

5 dB

Logarithmic resolution: M proportional to f yields a background prop. to M1/2

one decade



Part 2  –  Applications
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Applications
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• Radio-astronomy (Hanbury-Brown, 1952)

• Early implementations

• Radiometry (Allred, 1962)

• Noise calibration (Spietz, 2003)

• Frequency noise (Vessot 1964)

• Phase noise (Walls 1976)

• Phase noise (Lance, 1982)

• Phase noise (Rubiola 2000 & 2002))

• Effect of amplitude noise (Rubiola, 2007)

• Dual-mixer time-domain instrument (Allan 1975, Stein 1983)

• Amplitude noise & laser RIN (Rubiola 2006)

• Semiconductors (Sampietro RSI 1999)

• Electromigration in thin films (Stoll 1989)

• Fundamental definition of temperature

• Hanbury Brown - Twiss effect (Hanbury-Brown & Twiss 1956, Glattli 2004)



Radio-astronomy
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R. Hanbury Brown & al., Nature 170(4338) p.1061-1063, 20 Dec 1952
R. Hanbury Brown, R. Q. Twiss, Phyl. Mag. ser.7 no.366 p.663-682 

Measurement of the 
apparent angular size of 

stellar radio sources  
 

Jodrell Bank, Manchester 

• The radio link breaks the hypothesis 
of symmetry of the two channels, 
introducing a phase θ

• The cross spectrum is complex

• The the antenna directivity results 
from the phase relationships

• The phase of the cross spectrum 
indicates the direction of the radio 
source

500 m2

500 m2

f = 125 MHz
B = 200 kHz

wave planes

Cassiopeia
(or Cygnus)
radio source

DUT

a few km

X(ıf) X(ıf)Y(ıf) eıθ



Early implementations
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Spectral analysis at the single frequency f0, in the bandwidth B 
Need a filter pair for each Fourier frequency

X–Y X+Y

P
 =

 X
2
–
2
X

Y
+

Y
2

P
 =

 X
2
+

2
X

Y
+

Y
2

!P = 4XY

thermocouple

V ~ 4XY

Analog multiplierAnalog correlator

1940-1950 technology

f0, B

f0, B

X'(f0)cos(2!f0t) – X"(f0)sin(2!f0t)

Y'(f0)cos(2!f0t) – Y"(f0)sin(2!f0t)

(Y'X' + Y"X")/2

<Y'X' + Y"X"> / 2
x(t)

y(t)



Radiometry
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C. M. Allred, A precision noise spectral density comparator, J. Res. NBS 66C no.4 p.323-330, Oct-Dec 1962

0º

0º

0
º

1
8
0
º

T2

A

B

X = A + B

X = A – B
T1

Syx = k (T2 – T1) / 2

correlation and anti-correlation

noise comparator



Noise calibration
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L. Spietz & al., Primary electronic thermometry 
using the shot noise of a tunnel junction, 

Science 300(20) p. 1929-1932, jun 2003

shot noise

thermal noise S = kT
S = 2qIavgR high accuracy of Iavg 

with a dc instrument

Compare shot and thermal noise with a noise bridge

This idea could turn into a re-
definition of the temperature

plifier gains (18, 19). A promising noise ther-
mometer based on the ac Josephson standard is
being investigated by a collaboration of several
standards labs (20). This thermometer shares
with the SNT the prospect of relating tempera-
ture to the Josephson voltage standard.

Although not of direct interest for most
noise thermometry experiments, another impor-
tant type of electrical noise is shot noise, first
described by Schottky in 1918 (21). Shot noise
appears in any system in which current consists
of random discrete tunneling events, such as a
tunnel junction or a vacuum tube. Shot noise is
both frequency- and temperature-independent
and has the current spectral density SI ! 2eI,
where I is current. The junction noise used for
the SNT displays both shot noise and Johnson
noise, with a voltage-dependent transition
between the two regimes. This temperature-
dependent transition voltage allows us to deter-
mine temperature with only the use of a mea-
surement of the dc voltage and a relative noise
power measurement.

A tunnel junction can be modelled as a
pair of ideal Fermi reservoirs separated by a
tall, thin energy barrier. The tunneling rate
from a given energy level in one metal into
the other metal can be evaluated by Fermi’s
golden rule. It is well known that the tunnel-
ing rates are given by

"r31(13r) !
2#

$
%!&1'M(E)'r*!

2
D2(E)

fr(1) (E)[1 + f1(r)(E)]dE (1)

where &l!M(E)!r* is the tunneling matrix el-
ement from the left to the right side of the
junction, D(E) is the density of states, and
fl(E) and fr(E) ! fl(E + eV ) are Fermi func-
tions used to count the empty and filled states
on the left and right reservoirs, respectively
(22). For a sufficiently tall, thin barrier, the
tunneling amplitude and the density of states
near the Fermi energy can be considered to be
independent of energy. The occupation prob-
ability of any given state in one of the metals
is given by a Fermi function. Thus, under the
conditions that [eVbias, kBT] ,, Ebarrier, all
the terms can be moved outside of the inte-
gral except the Fermi functions. The current
through the junction can be found by taking
the difference of these two rates to get

I ! Ir + Il !
2#e
$
!&1!M(EF)!r*!

2

D(EF)2% [ fr(E)+f1(E)- dE ! V / R (2)

In other words, under these conditions, the
junction is just an ohmic resistor with no
temperature dependence. To find the current
spectral density of the noise, we just evaluate
the sum of the rates across the barrier instead
of the difference. Evaluation of the integral
gives the well-known result (23–25)

SI(V)!
2

R
%{ fr(E)[1+f l(E)]. f1(E)[1+fr(E)]}

dE!
2eV
R

coth! eV
2kBT"!2eIcoth! eV

2kBT"
(3)

Unlike the current, this expression has a
temperature-dependent scale that follows di-
rectly from the Fermi-Dirac distribution.
Evaluation of Eq. 3 at zero bias voltage yields
the Johnson result SI ! 4kBT/R, as required
by the fluctuation-dissipation theorem (26 ),
whereas in the limit eV // kBT Eq. 3 reduces
to SI ! 2eI, or shot noise (Fig. 1). As a
function of voltage, the junction noise chang-
es smoothly from Johnson noise to shot noise
in a way that depends only on kB, e, and a
simple analytic function. Thus, the voltage
dependence of the noise in Eq. 3 is analogous
to the equation of state of the ideal gas.

By measuring the noise as a function of
voltage, the temperature can be determined
from the voltage scaling of this transition
independent of the gain or noise of the am-
plifier chain and detector. This frees us from
the major limitations of traditional noise ther-
mometry: the need to calibrate gain, noise
temperature, and bandwidth to high accuracy.
The elimination of the need for absolute ac-
curacy in the amplifier chain calibrations al-
lows much more freedom in the selection of
components. In particular, we may replace
the kHz bandwidth amplifier typically used
by microwave amplifiers with hundreds of
MHz of bandwidth, allowing for a much fast-
er readout. In general, our amplifier has a
frequency-dependent gain g(0) and a noise
temperature tn(0), and we can fit the total
noise power P to the equation

P(V,T )! %d0g(0)# tn(0) .

eV
2kB

coth! eV
2kBT"$ !

G#Tn .
eV
2kB

coth! eV
2KBT"$ (4)

with average gain-bandwidth product G, av-
erage noise temperature Tn, and temperature
T as fit parameters. Equation 4 shows (Fig. 1)
that the SNT relates temperature to voltage in
a way that is independent of G and Tn. The
method is also independent of effects such as
frequency-dependent gain or impedance of
the sensor, the transmission of the tunnel
barrier, the sensor resistance, or any other
effect that does not vary with DC bias voltage
(27 ). Thus, our method retains the advantag-
es of noise thermometry, being primary and
electronic, but is much faster and simpler.

For a sensor, we used an Al-AlOx-Al tunnel
junction, fabricated with the use of electron

beam lithography and the Dolan bridge double-
angle evaporation technique (28, 29). We
designed the junctions to be about 50 ohms to
match to the impedance of the microwave elec-
tronics. These junctions show similar conduc-
tance characteristics to devices from published
literature (30), which have a barrier height of
about 2 V and a barrier thickness of about 1 nm.
During all measurements below 1.5 K, we ap-
plied a 0.5-T magnetic field to keep the alumi-
num in a nonsuperconducting state, although
the need for this field could be eliminated by
using a normal metal or by adding a local
permanent magnet.

In order to verify the form of the junction
noise, we simultaneously measured the dc
voltage and the radio frequency (rf ) noise
power (Fig. 2). We varied the bias across the
device to measure the noise as a function of
voltage across the junction. By fitting these
data to the predicted junction noise with a
least squares fit, we can determine a temper-
ature TSNT. We measured the junction noise
as a function of temperature from 0.260 to
300 K in a variable-temperature 3He refrig-
erator and from 0.01 through 4.2 K with the
use of a dilution refrigerator.

Before the SNT can be trusted as a
thermometer, we must verify the validity of
our “ideal gas law,” that is, whether the
junction noise follows the prediction of Eq.
3. To do this, we display the noise data in a
dimensionless form, normalizing the noise
power relative to the zero bias noise and the
voltage relative to the temperature (Fig. 3).
The data at all temperatures agree well with
a simple universal form over four decades
in temperature.

The largest deviations of the noise from
the expected form occur at the highest and
lowest temperatures. At temperatures above
about 30 K, we see deviations in the func-
tional form by as much as a few percent.
Because the devices are fabricated on a half-
micrometer-thick layer of silicon dioxide

Fig. 1. Theoretical plot of current spectral den-
sity of a tunnel junction (Eq. 3) as a function of
dc bias voltage. The diagonal dashed lines indi-
cate the shot noise limit, and the horizontal
dashed line indicates the Johnson noise limit.
The voltage span of the intersection of these
limits is 4kBT/e and is indicated by vertical
dashed lines. The bottom inset depicts the oc-
cupancies of the states in the electrodes in the
equilibrium case, and the top inset depicts the
out-of-equilibrium case where eV // kBT.

R E P O R T S

20 JUNE 2003 VOL 300 SCIENCE www.sciencemag.org1930
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In a tunnel junction, theory 
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Measurement of H-maser frequency noise
20

R. F. C. Vessot, Proc. Nasa Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964
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Phase noise measurement
21

F.L. Walls & al, Proc. 30th FCS pp.269-274, 1976
popular after W. Walls, Proc. 46th FCS pp.257-261, 1992

(relatively) large correlation bandwidth
provides low noise floor in a reasonable time



Oscillator phase noise measurement
22

A.L. Lance, W.D. Seal, F. Labaar ISA Transact.21 (4) p.37-84, Apr 1982

Original idea:
D. Halford’s NBS notebook 
F10 p.19-38, apr 1975

First published: A. L. Lance 
& al, CPEM Digest, 1978

The delay line converts the 
frequency noise into phase noise

The high loss of the coaxial cable 
limits the maximum delay

Updated version:
The optical fiber provides long 
delay with low attenuation 
(0.2 dB/km or 0.04 dB/µs)
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Phase noise measurement
23

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000
E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002

A.L. Lance & al., ISA Transact. 2(4) p.37-84 apr 1982
F. Labaar, Microwaves 21(3) p.65-69, mar 1982

!"#!"$

%&''()

*+,-)(./'0

1&2'+('.3'(42(,%56.78

9 :f ;<'/;..=78$S!
:f ;<=78"9S

'3>..........;<0=78?N

P"

@A&.'3.%B/,,C

/,-)(.2,%/)C
/'0.!/6.!D

/E-.#F!.*G(%@'/
H.!#CI.;<0

k  T"B =P" H.!!IJCI.;<>'/;..?=78
$

!!K"C$

!!J"C$

!!I"C$

!!L"C$

!$""C$

>!!KKCM?

>!!JKCM?

>!!IKCM?
!

>!!FKCM?

!"

>!!MKCM?

!"#!"$ !"%!"&

'())*+

!, -f ./)0.11234$S
-f ./234",S

5678+*10)9

N:1111111111111./9234;)<

P"=1!%>!1./9
0?81&$@15A*'B)0

BC(1)<1'D077>

078+*1E7'0+>
0)91!0F1!G

k  TB 2P =1!!HH>!1./:)0.11;234$
" "

:!!#I>%;

:!!II>%;

:!!JI>%;

:!!HI>%;

:!!KI>%;

!!J">#

!!H">#

!!K">#

!$"">#

!$!"># L(E)6*)1<)*ME*7'NF134

background noise noise of a by-step attenuator

noise 
sidebands

suppressed 
carrier



Effect of amplitude noise
24

E. Rubiola, R. Boudot, IEEE Transact. UFFC 54(5) pp.926-932, may 2007
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Dual-mixer time-domain instrument
25

S. Stein & al., IEEE Transact. IM 32(1) p.227-230, mar 1983

Original idea:
D. W. Allan, The measurement of frequency 
and frequency stability of precision oscillators, 
NBS Tech. Note 669, 1975

The average process rejects the mixer noise
This scheme is equivalent to the correlation method



Amplitude noise & laser RIN
26

E. Rubiola, the measurement of AM noise, dec 1995  
arXiv:physics/0512082v1 [physics.ins-det]
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Measurement of noise in semiconductors
27

M. Sampietro & al, Rev. Sci. Instrum 70(5) p.2520-2525, may 1999

signal with mean value S̄DUT proportional to the DUT input

signal !in our case the DUT noise power density" at the se-
lected frequency. The frequency components of the noises of

the two input amplifiers, instead, are uncorrelated to each

other !out of phase" and, after having followed the same path
as the DUT signal, give a signal at the output of the multi-

plier with zero mean value and standard deviation equal to

the input amplifier noise power density at the selected fre-

quency. The final averaging will reduce these fluctuations to

any low value by properly extending the measuring time and

allow us to evaluate S̄DUT !that is the desired DUT informa-
tion" with increasingly high precision. Note that the noise
power spectral density of the input amplifiers, which in a

traditional single channel instrument is summed to the DUT

signal power and therefore directly sets the minimum detect-

able DUT signal, in a two channel correlation instrument

defines only the amplitude of the fluctuations around the

DUT level.

The ideal instrument, performing an ideally long mea-

surement, will measure the correlated signal and reject com-

pletely the uncorrelated noise introduced by the two ampli-

fiers. The improvement in sensitivity is not infinite indeed

but limited in a real instrument by the finite measuring time

and by the residual correlation of the noises between the two

channels, as will be discussed in detail in Secs. V and IV.

The accuracy of the measurement, instead, is only limited by

the precision of the calculation of the system gain and of its

frequency response.

III. DESCRIPTION OF THE DIGITAL CORRELATOR

The frequency selection in each channel and the follow-

ing multiplication and averaging stage have been imple-

mented in our instrument by a digital processing section

whose two inputs contain the stream of digitized samples

from the output v1(t) and v2(t) of the analog amplifiers !see
Fig. 2". The Appendix shows that an estimate S̃DUT( f ) of the
frequency spectrum of the DUT signal can be obtained by

multiplying the discrete Fourier transform !DFT" V1( f ) of
the output of one channel with the complex conjugate of the

DFT V2*( f ) of the output of the other channel and by taking

its real part:8

S̃DUT! f "!
1

N
•R#V1! f "•V2*! f "$,

where N is the number of samples. The estimate S̃DUT( f ) is

improved increasing the total measurement time Tm by re-

peating M times the procedure with new streams of digitized

data and by averaging them. The features of the measure-

ment in terms of resolution bandwidth !RBW" and frequency
span are set by the parameters of the digitalization. By re-

calling that a stream of N samples taken at the sampling

frequency f s would give a DFT defined in N frequencies

equally spaced by % f! f s /N , we chose the values of f s and

of N in order to set the desired frequency span from fmin
! f s /N to fmax! f s/2, therefore defining our resolution band-

width to RBW! f s /N .

In our case we use analog to digital !A/D" converters
with a variable sampling frequency !from f s!5 Hz to f s
!100 MHz" and a buffer length N!32k samples. This has
allowed to reach values of fmin lower than 10 mHz and of

fmax of about 10 MHz, limited by the bandwidth of our am-

plifiers. Because of the limited value of N, within the men-

tioned frequency span we are able to produce a direct spec-

tral measurement covering 3 frequencies decades. A full

spectrum on 8–9 decades can be obtained by simply placing

the single results side by side.

IV. INSTRUMENT FRONT ENDS

The characteristics of the preamplifiers forming the input

stage of each channel are important to set the type of mea-

surement !current noise spectra or voltage noise spectra" and
to determine the ultimate performance of the instrument in

term of sensitivity and covered bandwidth. In addition, the

input electrical configuration allows the instrument to adapt

to a wide variety of DUT bias schemes, thus covering all the

requirements that can arise when testing the most advanced

semiconductor devices. The following sections will describe

in detail the test fixtures to perform current or voltage mea-

surements.

A. Current measurement front end

The configuration for current measurements is shown in

Fig. 3. The DUT is connected between the inputs of two

transimpedance amplifiers that convert the DUT current into

a voltage output, v1(t) and v2(t). The amplifiers allow us to

FIG. 1. Schematics of the building blocks of the correlation spectrum ana-

lyzer.

FIG. 2. Schematics of the building blocks of our correlation spectrum ana-

lyzer performing the suppression of the uncorrelated input noises by a digi-

tal processing of sampled data.
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ample, by using RF!100 M! , the curves would shift down
by a factor of 10, therefore allowing us to easily measure

sub-fA/!Hz DUT signals within a day.
The time needed to obtain a given sensitivity can be

traded with the RBW as indicated by Eq. "2#: a frequency
resolution relaxed by a factor of 10 "that is RBW!1 kHz#
would need ten times faster measurement for the same noise

sensitivity. This, of course, implies that the low frequency

section of a DUT spectrum would require a proportionally

long measurement time.

As an example of the capabilities of the instrument in

measuring extremely low noise levels, we present the results

of two different experiments. Figure 7 shows the frequency

spectrum of the current noise produced by a resistor of RD

!10 G! . Figure 7 proves that a 2 day experiment is long
enough to measure with good precision the expected theoret-

ical value of 1.3 fA/!Hz. To optimize the measurement the
data have been processed in order to produce a resolution

bandwidth increasing proportionally with the frequency from

a value of RBW!0.07 Hz at a frequency of 1 Hz until a

value of RBW!70 Hz at the final frequency of 1 kHz. As a
second example, we present in Fig. 8 the measurement of the

voltage noise spectral density produced by resistors of dif-

ferent values. The upper square-shaped points are the values

measured when only one channel is operated, that is when

the instrument behaves like a traditional spectrum analyzer.

In this case the sensitivity saturates to the limit given by the

noise of the input stage, equivalent to about 1.4 nV/!Hz
corresponding to the noise of an input resistor of about 100

! . The lower diamond-shaped points correspond to the mea-
surement performed with both channels active. The decrease

in the DUT noise, obtained by decreasing the DUT resis-

tance, is correctly tracked by the instrument at least down to

the value of 70 pV/!Hz. Values of resistors lower than 0.25
! were not tested because of the stray resistances of the

mounting.

VI. LIMITS DUE TO RESIDUAL CORRELATIONS
BETWEEN THE TWO CHANNELS

As already mentioned, the ultimate performance of the

instrument in term of sensitivity is set by those sources of

noise in the input preamplifiers that produce a signal exactly

in parallel to the one produced directly by the DUT. This

correlated component is read by the two channels of the in-

strument the same way as the DUT component and can

therefore not be removed.

For what concerns current noise measurements with the

setup of Fig. 3, the correlated component is produced by the

noise voltage sources en
2 and sets the minimum DUT signal

that can be measured by the instrument as:

icorr
2 !2en

2! 1
RD

" 1
RF

"
1

RD
#"$2CD"CD"Ci"Cstray#$ ,

"3#

where RD and CD are the equivalent resistance and capaci-

tance of the DUT. The limits predicted by Eq. "3# in the case
of our instrument and with a CD!0.5 pF are shown in Fig. 9
as a function of the frequency for two values of impedance

RD of the DUT. Note that at low frequencies the 1/f noise

FIG. 8. Measurement of the noise spectral density of DUT resistors per-

formed: "a# by using only one channel and "b# by using both channels and
exploiting the peculiarity of the correlation technique. The dashed line in-

dicates the theoretical noise values "4 kTRD) expected from the DUT resis-

tors.

FIG. 9. Experimental frequency spectrum of the current noise from DUT

resistances of 100 k! and 500 M! "continuous line# compared with the
limits "dashed line# given by the instrument and set by residual correlated
noise components.

FIG. 7. Frequency spectrum of the current noise produced by a resistor of

10 G! . Peaks are probably due to an imperfect shielding from interferences
that produce correlated signals.
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also define the bias voltage across the DUT to any desired dc

value by setting Vbias . The noise characteristics of the am-

plifiers are summarized in their equivalent input noise gen-

erators, in
2 and en

2 , and in their input capacitance Ci . Cstray
accounts for the stray capacitance of the text fixture to

ground. In the case of our instrument in
2!(5 fA/!Hz)2, en2

!(3.3 nV/!Hz)2, Ci!5 pF, and Cstray!25 pF. CF is intro-

duced to stabilize the amplifier and its value is chosen in

order that RFCF be about the same order of magnitude as

RD(Ci"Cstray), with RD the DUT resistance. The amplifier

outputs are ac coupled !down to the mHz range" to the A/D
converters !see Fig. 2".

The DUT current is read by both amplifiers and reaches

the two outputs completely correlated. On the contrary, the

current noise in
2 of each amplifier and the noise of the feed-

back resistor RF (iRF
2 !4kT/RF) are read only by the channel

that generate them thanks to the very low input impedance of

a transimpedance amplifier. These noises are uncorrelated

over the two channels and can therefore be reduced by a

properly long measurement. On the contrary, the voltage

noise en
2 of each amplifier produces a current through the

DUT, which is thus completely correlated over the two chan-

nels and therefore sets the lowest sensitivity limit of the in-

strument, as will be investigated in detail in Sec. VI

The choice of the value of the feedback resistor RF is a

compromise between the following two competing needs: !1"
high RF to maximize the amplification of the DUT signal

and to minimize its own current noise: both these effects

allow shorter measurements; !2" small RF to prevent the dc

bias current in the DUT from saturating the output v1(t) and
v2(t) of the amplifiers. A small RF also maximizes the band-

width fmax!1/(2#RFCF) of the measurement. In practice,

RF is chosen to satisfy the practical conditions defined in !2",
that is dc bias current and bandwidth. This choice does not

affect the sensitivity of the instrument, the only consequence

being a variation of the measuring time necessary to reach

the desired level of sensitivity. On the contrary, in a tradi-

tional one channel voltage spectrum analyzer that uses the

same transimpedance amplifier in front of its input port to

perform noise current measurements, the value of RF also

directly sets the sensitivity of the instrument to the value in
2

!4kT/RF . This has strong consequences when high sensi-

tivity measurements are performed because the necessary

choice of a high value RF would drop the bandwidth and the

capability of handling dc currents to very low values.

The current front end is well suited for direct current

noise measurements on semiconductor devices. Figure 4

shows, as an example, the connection to the instrument input

ports of a generic four-electrodes DUT, in which two elec-

trodes $indicated with !B" and !C" in the figure% are directly
biased by the instrument itself and the others can be biased

by independent voltage sources. In addition to the ease and

flexibility in the biasing of the device under test, Fig. 4 high-

lights a specific feature of the correlation spectrum analyzer,

not available in a traditional instrument with only one chan-

nel: the possibility of extracting the current component (IBC)

that flows between the two terminals, !B" and !C", connected
to the instrument irrespective of the presence in the same

terminals of other current components (IAB , ICD , IAC , IBD)

from the other terminals of the DUT. This peculiarity of the

correlation spectrum analyzer has many practical applica-

tions in the characterization of semiconductor devices. For

example it makes possible a selective and precise measure-

ment of the current in the channel of a MOSFET when the

current from the bulk is not negligible.

B. Voltage measurement front end

The measurement of a voltage noise spectrum can be

performed by the front-end scheme of Fig. 5. The signal

from the DUT is read by two independent voltage amplifiers

operated in parallel whose characteristics are summarized in

their equivalent noise generators, in
2 and en

2 , and in their

FIG. 3. Schematics of the active test fixture for current noise measurements.

FIG. 4. Example of connection of a four-electrode DUT to perform the

selective measurement of one current component excluding the others.
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Electromigration in thin films
28

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, proc. ICNF p.162-167, Hong Kong 23-26 aug 1999
RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003
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Hanbury Brown - Twiss effect
29

R. Hanbury Brown, R. Q. Twiss, Correlation between photons in two coherent beams of light, Nature 177(27), 1956
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9

in single-photon regime, anti-correlation shows up

Also observed  at microwave frequencies
C. Glattli & al. (2004),  arXiv:cond-mat/0403584v1 [cond-mat.mes-hall]
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kT = 2.7×10–25 J,   hν = 1.12×10–24 J,   kT/hν = –6.1 dB



Conclusions

• Correlation enables the rejection of the instrument noise

• In AM noise, RIN, etc., correlation enables the validation 
of the instrument without a reference low-noise source

• Display quantities

• <Re{Syx}>m is faster and more accurate

• |<Re{Syx}>m| and |<Syx>m| provide easier readout

• Applications in many fields of metrology

30

The cross spectrum method is magic

Correlated noise sometimes makes magic difficult

home page http://rubiola.org

http://arxiv.org/abs/physics/0602110
http://arxiv.org/abs/physics/0602110


Part A-1  –  The FFT analyzer 
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Fourier transform
32

Transform  –  inverse-transform pair

X(ıf) =
∫ ∞

−∞
x(t) e−ı2πft dt ↔ x(t) =

∫ ∞

−∞
X(ıf) eı2πft df

x(t) ∗ h(t) ↔ X(ıf)H(ıf)

x(t) h(t) ↔ X(ıf) ∗H(ıf)

Convolution integral

Time-convolution theorem

Frequency-convolution theorem

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ) h(t− τ) dτ =

∫ ∞

−∞
h(τ) x(t− τ) dτ

Dirac delta function

x(t) ∗ δ(t− t0) =
∫ ∞

−∞
x(t) δ(t− t0) dt = x(t0)



Normalization
33

quantity physical dimension purpose

XT (ıf) V/Hz Two-sided FT
Theoretical issues

SI(f) =
2
T |XT (ıf)|2, f>0

V2/Hz or W/Hz
One-sided PSD

Measurement of noise level
(power spectral density)

1
T SI(f) =

2
T 2 |XT (ıf)|2, f>0

V2 or W
One-sided PS

Power measurement of
carriers (sinusoidal signals)

XT (ıf) =
∫ T/2

−T/2
x(t) e−ı2πft dtTruncated signal

Commonly used quantities



Fourier transform pairs
34

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

Time domain Frequency domain



Fourier transform pairs
35

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

Time domain Frequency domain



Sampling and aliasing
36

Input signal

(Time-domain) 
sampling

Sampled signal
(and aliasing)

Time domain Frequency domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

multiplication convolution



Truncation and energy leakage
37

Sampled signal
& aliasing

Truncation

Truncated signal
& energy leakage

Time domain Frequency domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

multiplication convolution



Fitting the Fourier transform into a 
computer memory

38

Truncated signal

Frequency-domain
sampling

Final DFT
(Time-domain aliasing)

Time domain Frequency domain

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

convolution multiplication



Windowing  –  the problem
39

multiplication convolution

multiplication convolution

Input signal

(Time-domain) sampling

Sampled signal
(and aliasing)

Truncation

Truncated signal

Energy leaks in the sinc(x) 
side lobes
A signal can be hidden

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988



Windowing  –  solution
40

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988

Flat top

Hanning

hidden

visible

rectangular

Hanning

Parzen

Bartlett

rectangular

Hanning

Bartlett

Parzen



Window functions
41

E. Oran Brigham, The fast Fourier Transform, Prentice Hall, 1988



Spectrum of the quantization noise
42

Ergodicity suggests that the quantization 
noise can be calculated statistically

The Parseval theorem states that energy and power 
can be evaluated by integrating the spectrum

NB =
V 2

q

12

σ2 =
V 2

q

12

Changing B in geometric progression 
(decades) yields naturally 1/B (flicker) noise

Vq

sampling

x
error

v(t)

t

Vq

1/Vq

p(x)
σ2 =

V 2
q

12

S
v
(f

)

f

N

B
σ2 = NB

N =
V 2

q

12B

The analog-to-digital converter introduces 
a quantization error x,   –Vq/2 ≤ x ≤ +Vq/2

S
v
(f

)

fB1 B2 B4

N1
N2

N3 N4

B3log-log



Noise of the real FFT analyzer
43

The quantization noise 
scales with the frequency 
span, the front-end noise 
is constant

The energy is equally 
spread in the full FFT 
bandwidth, including the 
upper region not 
displayed because of 
aliasing

ADC

Sv(f)

log-log

FFT
algorithm

input Nquant

B3B2B1 B4 f

N1

N2

N3

N4

B5

N5

Nampli

Nampli

NtotNquant

720 values/decade

0 7
9

8
0 8
0
0

8
0
1

1
0
2
3

previous

decade

filter roll-off

(aliasing)

1024 points FFT

Sxx



Example of FFT analyzer noise
44

HP-3562A 
(E.Rubiola notebook v.5 p.177)

Theoretical evaluation

DAC 12 bit resolution, including sign

range 10 mVpeak

Vfsr = 20 mV   (±10 mV)

resolution
Vq = Vfsr / 212 

= 4.88 µV

total noise
σ2 = (4.88 µV)2 / 12 

= 2×10–12   V2  (–117 dB)

quantization noise PSD
Sv = σ2 / B

= –117 dBV2/Hz  with B = 1 Hz   (etc.)

Front-end noise, evaluated from the plot
Sv = 2×10–15   V2  (–150 dB), at 10–100 kHz 

or 45 nV/Hz1/2

use Sv = 4kTR
R = 125 kΩ    
or R = 100 kΩ and F = 1 dB (noise figure)

Experimental observation



Oscillator noise measurement
45

1 10 100 1000 10000 1e+05
!180

!160

!140

!120

!100

!80

!60

!40

!20
Sphi(f), dBrad^2/Hz

frequency, Hz

480 MHz SAW oscillator

file oscillator!noise!with!jump
E. Rubiola, may 2008

A tight loop is preferred because:
– reduces the required dynamic range
– overrides (parasitic) injection locking 

under test

reference F
F

T

a
n

a
ly

z
e
r

control
VCO in

lo
g
-l
o
g

o
scillato

r n
o
ise

PLL out

P
LL 

re
sp

onse

frequency

Steps are sometimes observed, due to 
the FFT quantization noise



FFT noise in oscillator  measurements
46

! !" !"" !""" !"""" !#$"%
!!&"

!!'"

!!("

!!)"

!!""

!&"

!'"

!("

!)"
*+,-./012345637)89:

/5#;<#=>?129:

Quantization noise

+656@#A#5B
;<6=A2=C-B#2D2)E"#!!F2824
GGH2/ICC52D2FE"#!!J
@2D2K!'12F)12'(12!)&12)%'L
MNN2/>2D2F)"""
CB>-II2O"22D2)E"#!!&
CB>-II2O!!2D2!E"#!!F
CB>-II2O!)2D2!E"#!P
CB>-II2O!F2D2&E"#!%

/-I#2CB>-II6AC5!>6I>!Q-A,!R<@+
SE2T<O-CI612@6?2)""&

observ. PLL out

ideal PLL out

true oscill. noise

FFT noise

observ. oscill. noise

step

error

! !" !"" !""" !"""" !#$"%
!!&"

!!'"

!!("

!!)"

!!""

!&"

!'"

!("

!)"
*+,-./012345637)89:

/5#;<#=>?129:

Quantization noise

+656@#A#5B
;<6=A2=C-B#2D2)E"#!!F2824
GGH2/ICC52D2FE"#!!J
@2D2K!'12F)12'(12!)&12)%'L
MNN2/>2D2F)"""
CB>-II2O"22D2)E"#!!&
CB>-II2O!!2D2!E"#!!F
CB>-II2O!)2D2!E"#!P
CB>-II2O!F2D2&E"#!%

/-I#2CB>-II6AC5!B-@<I!Q-A,!R<@+
SE2T<O-CI612@6?2)""&

observ. PLL out

true oscill. noise

FFT noise

observ. oscill. noise

step

error

calculated simulated

The steps are due to the FFT quantization noise

The problem shows up when the dynamic range is 
insufficient, often in the presence of large stray signals 

Systematic errors are also possible at high Fourier 
frequencies

Explanation: the steps occurring at the transition 
between decades are due the quantization noise, 
when the resolution is insufficient



Linear vs. logarithmic resolution
47

Linear resolution

G. Montress & al, TUFFC 41(5) 1994

Logarithmic resolution (80 pt/dec)

E. Rubiola, plot 610

Combining M independent 
values, the confidence 
interval is reduced by sqrt(M), 
(5 dB left-right in one decade)

A weighted average is also 
possible

720 values/decade

M0 Mi
MN

0 7
9

8
0 8
0
0

8
0
1

1
0
2
3

previous

decade

filter roll-off

(aliasing polluted)

1024 points FFT

80 points/decade

average

Sxx

Sxx



Part A-2  –  Statistics

48



1. x(t)  <=>  X(ıf)  are gaussian

2. X(ıf1)  and X(ıf2)  are uncorrelated 
var{X(ıf1)} = var{X(ıf2)}

3. X’ and X”  are uncorrelated
var{X’} = var{X”} = var{X}/2

4. Y = X1 + X2 is gaussian
var{Y} = var{X1} + var{X2}

5. Y = X1 × X2 is gaussian
var{Y} = var{X1} var{X2}

Properties of white zero-mean 
gaussian noise

49

x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

✔



Properties of flicker noise

1. x(t)  <=>  X(ıf),  there is no a-priori relationship 
between the distribution of x(t) and X(ıf) (theorem).
Central limit theorem => X(ıf) can be gaussian

2. X(ıf1)  and X(ıf2) are correlated. 
correlation decays rapidly when f1 ≠≠ f2
var{X(ıf1)} ≠ var{X(ıf2)}

3. X’ and X”  can be correlated
var{X’} ≠ var{X”} ≠ var{X}/2

4. Y = X1 + X2, with zero-mean X1, X2,
var{Y} = var{X1} + var{X2}

5. If X1 and X2 are zero-mean gaussian r.v.
then Y = X1 × X2 is zero-mean gaussian
and  var{Y} = var{X1} var{X2}

50

x(t)  <=>  X(ıf)   =   X’(ıf)+ ıX”(ıf)

✔



One-sided gaussian distribution
51

x is normal distributed with 
zero mean and variance σ2

y = |x|

!"! !"# $"! $"# %"! %"# &"! &"# '"! '"# #"!
!"!

!"$

!"%

!"&

!"'

!"#

!"(

!")

!"*

!"+

$"!

$"$

$"%

$"&

$"'

!"#$%&'&()*+

!"#$%&'&+

!"#$%&'&+),+

-./!!"0/0&#%1!!"%.&0"!23"412"5.

,-./012/!3-4/4!56733!4-389-:
;"0<7:-1.6=0>?90%!!*

✔

✔
one-sided gaussian distribution with σ2 = 1/2

quantity value
with σ2 = 1/2 [10 log( ), dB]

average =
√

1
π

0.564
[−2.49]

deviation =
√

1
2
− 1

π
0.426

[−3.70]

dev
avg

=
√

π

2
− 1 0.756

[−1.22]

avg + dev
avg

= 1 +
√

1
2
− 1

π
1.756

[+2.44]

avg − dev
avg

= 1−
√

1
2
− 1

π
0.244

[−6.12]

avg + dev
avg − dev

= 1 +
√

1/2− 1/π

1−
√

1/2− 1/π

7.18
[8.56]

✔

f(x) = 2
1√
2π σ

exp
(
− x2

2σ2

)
y ≥ 0

E{f(x)} =
√

2
π

σ

E{f2(x)} = σ2

E{|f(x)− E{f(x)}|2} =
(

1− 2
π

)
σ2



Chi-square distribution
52

is χ2 distributed with r
degrees of freedom 

χ2 =
r∑

i=1

x2
i

z! = Γ(z + 1), z ∈ N

xi are normal distributed with 
zero mean and equal variance σ2

! " # $ % &! &" &# &$ &% "!
!'!

!'&

!'"

!'(

!'#
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!"#"&

!"#"'
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)*+!,-./!0

*+,-./0+!12345-!6+175+8
9'.:38+;,4<.=>5."!!%

Notice that the sum of χ2 
is a χ2 distribution

χ2 =
m∑

j=1

χ2
j , r =

m∑

j=1

rj

✔

f(x) =
x

r
2−1 e−

x2
2

Γ
(

1
2r

)
2 r

2
x ≥ 0

E{f(x)} = σ2r

E{[f(x)]2} = σ4r(r + 2)

E{|f(x)− E{f(x)}|2} = 2σ4r



Averaging m chi-square distributions
53

averaging m variables |X|2, complex X=X’+ıX”, yields a  χ2 distribution with r = 2m 

dev
avg

=
1√
m

relevant case: σ2 = 1/2

avg = 1

dev =
1√
m
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1
m

χ2 =
1
m

m∑

j=1

(X ′
j)

2 + (X ′′
j )2

E
{

1
m

f(x)
}

=
σ2r

m
= 2σ2

E
{∣∣∣∣

1
m

f(x)− E
{

1
m

f(x)
}∣∣∣∣

2}
=

2σ4r

m2
=

4σ4

m



Rayleigh distribution
54

x1 and x2 are normal distributed with 
zero mean and equal variance σ2

x is Rayleigh-distributed
x1

x2

y =
 (x 1 

+ x 2
)
1/2

Re

Im
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sigma = 0.71

sigma = 1

sigma = 1.41

Rayleigh distribution
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f(x) =
x

σ2
exp

(
− x2

2σ2

)
x ≥ 0

E{f(x)} =
√

π

2
σ

E{f2(x)} = 2σ2

E{|f(x)− E{f(x)}|2} =
4− π

2
σ2

Rayleigh distribution with σ2 = 1/2
quantity value

with σ2 = 1/2 [10 log( ), dB]

average =
√

π

4
0.886

[−0.525]

deviation =
√

1− π

4
0.463

[−3.34]

dev
avg

=
√

4
π
− 1 0.523

[−2.82]

avg + dev
avg

= 1 +
√

4
π
− 1 1.523

[+1.83]

avg − dev
avg

= 1−
√

4
π
− 1 0.477

[−3.21]

avg + dev
avg − dev

= 1 +
√

4/π − 1
1−

√
4/π − 1

3.19
[5.04]

✔

✔

x =
√

x2
1 + x2

2


