Scientific Instruments

Phase Noise and Frequency Stability in Oscillators

Copyright Information

Unless otherwise specified, everything is
© Enrico Rubiola ORCID 0000-0002-5364-1835 distributed under Creative Commons 4.0 CC-BY-NC-ND license

This document

- Is intended for classroom use
- PhD students and guests attending the Enrico's lectures at the University of Bourgogne Franche-Comté, France
- Has no lucrative purpose.

Teaching is already paid by my monthly salary

- Makes fair use of a very small amount of copyrighted material, intended to promote reading the original
- Should you spot a problem, please email me at enrico [at] rubiola [dot] org rather than making a fuss

Lecture 1

Scientific Instruments \& Oscillators

Lectures for PhD Students and Young Scientists

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Contents

- Quantum noise
- Thermal noise
- Shot noise

Instruments

Instruments

Think with models

Logical sequence

- Identify the physical phenomena
- Order of magnitude first
- Block diagram
- Non-idealities
- Referred at the input (preferred)
- Referred at the output
- Information/energy flow
- Math at the end

Thermal Noise

$$
\begin{aligned}
& \text { Planck constant } h=6.02607015 \times 10^{-34} \mathrm{Js} \\
& \text { Electron charge } e=1.60207015 \times 10^{-19} \mathrm{C} \\
& \text { Boltzmann constant } k=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

J. B. Johnson, Thermal Agitation of Electricity in Conductors, Phys Rev 32(1) p.97-109, July 1928
H. Nyquist, Thermal agitation of electric charges in conductors, Phys Rev 32(1) p.110-113, July 1928

The physical concept of spectrum

- The PSD is the distribution of power vs. frequency (power in 1-Hz bandwidth)
- The PS is the distribution of energy vs. frequency (energy in 1-Hz bandwidth)
- Power (energy) in physics is a square (integrated) quantity
- PSD \rightarrow W/Hz, or $V^{2} / \mathrm{Hz}, \mathrm{A}^{2} / \mathrm{Hz}, \operatorname{rad}^{2} / \mathrm{Hz}$ etc.

$$
S_{v}(f)=\frac{\left\langle v_{B}^{2}(f)\right\rangle}{B}
$$

$$
\text { Discrete: } \Delta f \text { is the resolution }
$$ Continuous: $\Delta f \rightarrow 0$

$\underline{\text { average power in the bandwidth } B \text { centered at } f}$

The extended Planck law

Physical laws

Blackbody radiated energy

$$
S(v)=\frac{h v}{e^{h v / k T}-1} \quad[\mathrm{~W} / \mathrm{Hz}]
$$

At the receiver input

$$
S(v)=h v+\frac{h v}{e^{h v / k T}-1}
$$

The additional $h v$ is the zero point energy
Nawrocki, Eq.1.13, Göbel-Siegner, Eq.2.10

Receiver

Thermal regime $h v \ll k T$
$e^{h v / k T} \simeq 1+h v / k T$

$$
S(v)=k T
$$

Quantum regime $h v \gg k T$

$$
e^{h \nu / k T} \gg 1
$$

$$
S(v)=h v
$$

$\begin{aligned} & \text { cutoff } \\ & \text { frequency }\end{aligned} v_{c}=\frac{k T}{h} \ln (2)$

Cutoff frequency

$$
v_{c}=\frac{k T}{h} \ln (2)
$$

Reference	$T, \mathrm{~K}$	v	λ
room	300	4.33 THz	$69.2 \mu \mathrm{~m}$
Liquid N_{2}	77	1.11 THz	$270 \mu \mathrm{~m}$
Liquid He	4.2	60.7 GHz	4.94 mm
${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$	0.01	144 MHz	2.08 m

POI - The dilution refrigerator

- ${ }^{4} \mathrm{He}$ is a boson
- Superfluid at low temperature
- ${ }^{3} \mathrm{He}$ is a fermion
- Pauli exclusion principle
- Fermi liquid at low temperature
- Cooling process
- Pre-cool the mixture to 1 K (cryocooler)
- A capillary with large flow resistance cools to $0.5-0.7 \mathrm{~K}$
- The fluid is unstable
- Phase separation is endothermal

Theory: Heinz London, early 1950s
Implementation: 1964, Kamerlingh Onnes Lab, Leiden H. K. Onnes (Nobel 1913) liquefied He (1908) and discovered the superconductivity of Hg (1911)

Featured reading:
Chapter 9, S. W. Van Sciver, Helium cryogenics $2^{\text {nd }}$ ed., Springer 2012

Dilution refrigerator at the FEMTO-ST Institute

The "Soul" of thermal noise

Thermal noise is blackbody radiation transmitted through an electrical line

It has two degrees of freedom, each has energy $k T / 2$

$$
\begin{array}{cl}
\text { electric and magnetic field } & E_{C}=\frac{1}{2} C V^{2} \rightarrow \frac{1}{2} k T \\
- \text { or }- & E_{L}=\frac{1}{2} L I^{2} \rightarrow \frac{1}{2} k T
\end{array}
$$

two polarization states

Thévenin and Norton models

Thévenin Model

Thermal EMF $\quad V_{G} \rightarrow e_{n} \equiv \sqrt{S_{v}} \quad[\mathrm{~V} / \sqrt{\mathrm{Hz}}]$

Norton Model

Maximum power transfer $R_{L}=R_{G}$
$V=\frac{1}{2} V_{\text {open }} \quad I=\frac{1}{2} I_{\text {short }} \quad P=\frac{1}{4} V_{\text {open }} I_{\text {short }}$

Jargon: the available power/voltage/current is the $P / V / I$ delivered with $R_{L}=R$

Thermal noise

Terminated resistor (hot \rightarrow cold)

$$
\begin{array}{ll}
S=k T & \mathrm{w} / \mathrm{Hz} \\
S_{V}=k T R & \mathrm{~V}^{\mathrm{Z}} / \mathrm{Hz} \\
S_{I}=k T / R & \mathrm{~A}^{2} / \mathrm{Hz}
\end{array}
$$

Two resistors at different temperature

$$
S=k\left(T_{2}-T_{1}\right)
$$

$$
S_{V}=4 k T R \quad \text { Open circuit }
$$

Noise of a
50Ω resistor

Reference	$T, \mathrm{~K}$	Available W / Hz	Open $\mathrm{pV} / \mathrm{VHz}$	Short $\mathrm{pA} / \mathrm{VHz}$
room	300	4.14×10^{-21}	910	18.2
T_{0} (RF electronics) $)$	290	4.00×10^{-21}	895	17.9
Dry ice $\left(-78.5^{\circ} \mathrm{C}\right)$	194.7	2.69×10^{-21}	733	14.7
Liquid N_{2}	77	1.06×10^{-21}	461	9.22
Liquid He	4.2	5.80×10^{-23}	108	2.15
${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$	0.01	1.38×10^{-25}	5.25	0.105

$$
S_{I}=4 k T / R \quad \text { Short circuit }
$$

Image user Quibik, Wikimedia

Thermal equilibrium
$\rightarrow 0$

The Harry Nyquist's article

Fig. 1.

After thermal equilibrium, isolate the line (short at both ends).

$$
\begin{aligned}
& \text { Modes at } v=n c / \ell \\
& v=\text { frequency }, \quad c=\text { velocity }
\end{aligned}
$$

Energy $k T$ per mode

$$
d E=2 \ell k T d v / c
$$

Average power in frequency $d v$, and in time ℓ / c is $k T d v$

Extension to electrical circuits
R

Energy per degree of freedom

$$
h v /\left(e^{h v / k T}-1\right)
$$

instead of $k T$

Conclusion

$$
E_{v}^{2} d v=4 R_{v} h d v /\left(e^{h v / k T}-1\right)
$$

Fig. 2.
J. B. . Johnson, Thermal Agitation of Electricity in Conductors, Phys Rev 32(1) p.97-109, July 1928
H. Nyquist, Thermal agitation of electric charges in conductors, Phys Rev 32(1) p.110-113, July 1928

Thermal noise across a capacitor

Beware of CMOS gates and Track/Hold circuits
$S_{V}=4 k T R$

$$
\left\langle V^{2}\right\rangle=k T / C, \quad \forall R
$$

0.1 pF	$200 \mu \mathrm{~V}$	20 aC	125 e
1 pF	$64 \mu \mathrm{~V}$	64 aC	400 e
10 pF	$20 \mu \mathrm{~V}$	200 aC	1250 e
100 pF	$6.4 \mu \mathrm{~V}$	640 aC	4000 e
1 nF	$2 \mu \mathrm{~V}$	2 fC	12500 e

Proof (stat physics)

Capacitor $E=\frac{1}{2} C V^{2}$
The energy fluctuation per degree of freedom is

$$
E=k T / 2
$$

at thermal equilibrium
Mean square fluctuation

$$
C \Delta\left(V^{2} / 2\right)=k T / 2
$$

Conclusion

$$
\left\langle V^{2}\right\rangle=k T / C
$$

Sarpeshkar R, Delbruck T, Mead CA - White Noise in MOS Transistors and Resistors - Circuits and Devices, November 1993

Proof (circuit theory)

Voltage

$$
S_{V}=4 k T R
$$

Transfer function

$$
|H(f)|^{2}=\frac{1}{1+(2 \pi f R C)^{2}}
$$

Mean square fluctuation

$$
\left\langle V^{2}\right\rangle=\int_{0}^{\infty} 4 k T R|H(f)|^{2} d f
$$

Conclusion, R cancels, and

$$
\left\langle V^{2}\right\rangle=k T / C
$$

Shot Noise

```
Electron charge e=1.60207015 \times 10-19 C
```

W. Schottky, „Über spontane Stromschwankungen in verschiedenen Elektrizitatsleitern", Annalen der Physik 362(23) p541-567, 1918 (in German). Get free pdf from Zenodo

Open access English translation "On spontaneous current fluctuations in various electrical conductors" by Martin Burkhardt, with additional editing by Anthony Yen

The exponential distribution

A cell emitting particles at random, at the average rate of ϕ events/s
 In the literature we often find λ instead of ϕ, and x instead of t

Probability Density Function

PDF $\quad p(t ; \phi)=\phi e^{-\phi t}, t \geq 0$
Mean $\mu=1 / \phi$, Variance $\sigma^{2}=1 / \phi^{2}$

Properties

Memoryless $\mathbb{P}\{T>s+t \mid T>s\}=\mathbb{P}\{T>t\}$
T is the waiting time

- Statistically, T is the same starting at 0 or at s, if the particle did not show up
- Maximum differential entropy \rightarrow maximum entropy for a given μ

$$
\begin{aligned}
& \mu=\int t p(t ; \phi) d t=1 / \phi \\
& \sigma^{2}=\int(t-\mu)^{2} p(t ; \phi) d t=1 / \phi^{2}
\end{aligned}
$$

This describes "emissions" in physics

- Electrons and holes in a junction
- Photons
- Radioactive decay (assuming that the nuclei are not lost)

Featured reading:

W. Feller, Introduction to probability theory and its applications, $2^{\text {nd }}$ ed, Wiley. Vol.I, 1957, vol.II, 1970

Vol. 1, Sec. XVII-6 provides a proof that in a memory-less process, the tail of the distribution has to be of the form $u=\exp -\lambda t$ (or zero), and nothing else. See also vol.II, Sec. I-3

Homogeneous Poisson process

An ensemble of memoryless and statistically independent cells emitting at random at the average rate (flux) of ϕ events/s

$$
\mathbb{P}\{N(\tau)=k\}=\frac{(\phi \tau)^{k}}{k!} e^{-\phi \tau}
$$

\mathbb{P} is the probability that the number N of particles emitted from time 0 to τ equals k

Properties

average

$$
\mathbb{E}\{N(\tau)\}=\phi t \quad \text { written as } \quad \mu=\phi \tau
$$

variance

$$
\mathbb{E}\left\{[N(\tau)-\mu]^{2}\right\}=\phi t \quad \sigma^{2}=\phi \tau
$$

signal-to-noise ratio

$$
S N R=\sigma / \mu
$$

$$
S N R=\sqrt{N}
$$

physical meaning of ϕ

$$
\lim _{t \rightarrow \infty} \frac{N(t)}{t}=\phi \quad \begin{aligned}
& \text { average no of events / time } \\
& \text { flux in the case of particle emission }
\end{aligned}
$$

W. Feller, Introduction to Probability Theory and Its

Applications, vol.II, $2^{\text {nd }}$ ed., Wiley 1970

Shot noise

Charge

$$
\begin{array}{lll}
e & \mathbb{E}(Q)=\phi \tau e & {[\mathrm{C}]} \\
e^{2} & \mathbb{V}(Q)=\phi \tau e^{2} & {\left[\mathrm{C}^{2}\right]} \\
e^{2} \tau & \mathrm{~S}_{Q}(f)=2 \phi \tau^{2} e^{2} & {\left[\mathrm{C}^{2} / \mathrm{Hz}\right]}
\end{array}
$$

Photon energy		
$h v$	$\mathbb{E}(Q)=\phi \tau h v$	$[J]$
$(h v)^{2}$	$\mathbb{V}(Q)=\phi \tau(h v)^{2}$	$\left[\mathrm{~J}^{2}\right]$
$(h v)^{2} \tau$	$\mathrm{~S}_{Q}(f)=2 \phi \tau^{2}(h v)^{2}$	$\left[\mathrm{~J}^{2} / \mathrm{Hz}\right]$

Current

$$
\begin{aligned}
& e / \tau \quad \mathbb{E}(I)=\phi e \\
& e^{2} / \tau^{2} \quad \mathbb{V}(I)=\phi \tau(e / \tau)^{2} \\
& e^{2} / \tau \quad \mathrm{S}_{I}(f)=2 \phi \tau^{2}\left(e^{2} / \tau^{2}\right) \\
& =2 \phi e^{2}=2 e I \quad\left[\mathrm{~A}^{2} / \mathrm{Hz}\right]
\end{aligned}
$$

Photon power

$$
\begin{array}{rlrl}
h v / \tau & \mathbb{E}(I) & =\phi h v & {[\mathrm{~W}]} \\
(h v)^{2} / \tau^{2} & \mathbb{V}(I) & =\phi \tau(h v / \tau)^{2} & {\left[\mathrm{~W}^{2}\right]} \\
(h v)^{2} / \tau & \mathrm{S}_{I}(f) & =2 \phi \tau^{2}\left[(h v)^{2} / \tau^{2}\right) \\
& & =2 \phi(h v)^{2} & {\left[\mathrm{~W}^{2} / \mathrm{Hz}\right]}
\end{array}
$$

Quantum Limit

Planck constant $h=6.02607015 \times 10^{-34}$ Js
Electron charge $e=1.60207015 \times 10^{-19} \mathrm{C}$
Boltzmann constant $k=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

This section is based upon
E. O. Göbel, U. Siegner, The New International System of Units (SI), Wiley VCH 2019

See also
M. Gläser, M. Kochsiek (Ed.), Handbook of Metrology vol.1-2, Wiley VCH 2010
V. B. Braginsky, F. Ya. Khalili, Quantum Measurement, Cambridge 1992

Fundamental quantum limit

Photon energy

$$
E=h v
$$

Heisenberg Principle:
The minimum action H is

$$
H \gtrsim h
$$

If p and x are momentum and position,

$$
\Delta x \Delta p \geq \frac{1}{2} \hbar
$$

Planck constant
$h=6.02607015 \times 10^{-34} \mathrm{Js}$ (exact)

Application to the measurement
Energy extracted from the system in the time $\tau \quad$ Measurement bandwidth
$E \gtrsim h / \tau$ or $E \gtrsim h B$
$\zeta B=1 / \tau$

Quantum limit in the capacitor

$$
E \gtrsim h / \tau
$$

Use large C and τ

$$
\begin{aligned}
& C=1.5 \mathrm{nF}, \tau=10 \mathrm{~ms} \\
& V=9.4 \mathrm{pV}
\end{aligned}
$$

Voltage

$\frac{1}{2} C V^{2} \gtrsim \frac{h}{\tau}$

$$
V \gtrsim \sqrt{\frac{2 h}{\tau C}}
$$

Charge

$$
\frac{1}{2} \frac{h}{\tau}
$$

$$
Q \gtrsim \sqrt{\frac{2 h C}{\tau}}
$$

Use small C and large τ
$C=2 \mathrm{pF}, \tau=10 \mathrm{~ms}$
$Q=5.15 \times 10^{-22} \mathrm{C}$

Quantum limit in the inductor

$E \tau \gtrsim h$

Current

$\frac{1}{2} L I^{2} \gtrsim \frac{h}{\tau}$

$$
I \gtrsim \sqrt{\frac{2 h}{\tau L}}
$$

Use large τ and L

$L=200 \mathrm{mH}, \tau=100 \mathrm{~ms}$
$I=25.7 \mathrm{aA}$

Flux

$$
\Phi \gtrsim \sqrt{\frac{2 h L}{\tau}}
$$

Use small L and large τ

$$
\begin{aligned}
& L=2.5 \mathrm{nH}, \tau=100 \mathrm{~ms} \\
& \Phi=5.8 \times 10^{-21} \mathrm{~Wb}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{0} \simeq 1.257 \mu \mathrm{H} / \mathrm{m} \\
& L=\mu_{0} \ell \rightarrow \ell=2 \underline{\mathrm{~mm}} \\
& \Phi_{0}=\frac{h}{2 e}=2.0678 \times 10^{-15} \mathrm{~Wb}
\end{aligned}
$$

Quantum limit in the resistor

$E \tau \gtrsim h$

Use small R and large τ

$$
\begin{aligned}
& R=50 \Omega, \tau=100 \mathrm{~ms} \\
& V=1.82 \mathrm{fV}
\end{aligned}
$$

Current

$$
\begin{aligned}
& I \gtrsim \sqrt{\frac{h}{R}} \frac{1}{\tau}
\end{aligned}
$$

Use large R and τ

$$
\begin{aligned}
& R=1 \mathrm{M} \Omega, \tau=100 \mathrm{~ms} \\
& I=2.57 \times 10^{-19} \mathrm{~A}
\end{aligned}
$$

$$
e=1.6 \times 10^{-19} \mathrm{C}
$$

Thermal vs quantum noise

This figure is from
Siebert, B.R.L. and Sommer, K.D. (2010) in Uncertainty in Handbook of Metrology, vol. 2 (eds M. Gläser and M. Kochsiek), Wiley-VCH Verlag GmbH, Weinheim, pp. 415-462.
© Wiley-VCH
ISBN 978-3-527-40666-1

Lecture

Lecture 2

Scientific Instruments \& Oscillators

Lectures for PhD Students and Young Scientists

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Contents

- Flicker noise
- General instrument architecture
- Noise in electronic devices

Flicker (1/f) Noise

Ubiquitous phenomenon in science and technology

Flicker (1/f) noise

- Extremely weak noise phenomenon
- A major issue in spectral analysis
- Relevant in cryogenic nanodevices and qbits
- Resolution cannot be improved by increasing the measurement time
- Observed in a large variety of phenomena (conductance, semiconductors, vacuum tubes, music and radio broadcasting, Internet, pulsars, squids, earthquakes, fractals)
- Electronics, exact $1 / f$ slope up to 8 decades
- Other fields, $1 / f^{\alpha}, \alpha=0.5$... 1.5
- Discovered by Johnson, 1925
- Studied in carbon microphones and in the fluctuation of resistivity, >1930
- Well explained in some cases (magnetics...)
- No unified theory

Integrated flicker noise is extremely small

How small the $1 / f$ noise can be?

$$
\sigma^{2}=\int_{a}^{b} \frac{1}{f} d f=\ln \left(\frac{b}{a}\right)
$$

Let's consider the widest, craziest frequency range

$$
\begin{array}{c|c}
\qquad a=\frac{1}{A_{U}} & b=\frac{1}{2 \pi \tau_{P}} \\
\text { Age of Universe } & \text { Planck time (Gauss) }
\end{array}
$$

$$
A_{U}=4.35 \times 10^{17} \mathrm{~s}(13.8 \mathrm{By}) \quad t_{P}=\sqrt{\frac{\hbar G}{c^{5}}} \simeq 5.39 \times 10^{-44} \mathrm{~s}
$$

$$
\begin{equation*}
\ln \left(\frac{b}{a}\right)=\ln \left(\frac{1 / 2 \pi t_{P}}{1 / A_{U}}\right)=138.4 \tag{21.4dB}
\end{equation*}
$$

Integrated $1 / f^{\alpha}$ noise is small even for $\alpha \neq 1$

$$
\sigma^{2}=\int_{a}^{b} \frac{1}{f^{\alpha}} d f
$$

Distribution of relaxation times

Uniform (random) distribution of time constants on a log-log scale

1/f noise and FD theorem

Flicker $(1 / f)$ dimensional fluctuation is powered by thermal energy

Debye-Einstein theory for heat
capacity

A single theory explains

- Heat capacity
- Thermal expansion
- Elasticity
... and their fluctuations

Fluctuation Dissipation

 theorem in a nutshell

Thermal $1 / f$ from structural dissipation

There is no viscous dissipation in solids

Dissipation is structural (hysteresis)

Structural dissipation
micro/nanoscale, instantaneous
Dissipated energy $E=\int F d x$
Small vibrations
The hysteresis cycle keeps the aspect ratio
$E \propto x_{0}^{2} \quad$ Energy lost in a cycle
Thermal equilibrium
$P=k T \quad$ in 1 Hz BW
$P \propto k T x_{0}^{2}$
$x_{0}^{2} \propto 1 / f \rightarrow$ flicker

Bibliography about flicker

- C. J. Christiansen, G. L. Pearson, Spontaneous Resistance Fluctuations in Carbon Microphones and Other Granular Resistances, BSTJ 15(2) p.197-223, April 1937. Arguably, the discovery of flicker.
- F. N. Hooge, $1 / f$ noise is no surface effect, Phis Lett 29(3) p.139-140, 21 April 1969. Classical article.
- D. J. Levitin, P. Chordia, V. Menon, Musical Rythm Spectra from Bach to Joplin Obey to $1 / f$ Power Law, Proc. Nat. Academy of Science 109(10) p.716-3720, February 2012.
- A. L. Mcwhorter, $1 / f$ Noise and Germanium Surface Properties, Proc. Semiconductor Surface Physics p.2017-228, June 1956. Classical article.
- E. Milotti, 1/f noise, a pedagogical review, arXiv.physics 0204033, April 2002.
- Paladino E et al., $1 / f$ Noise, Implications for solid-state quantum information, Rev Modern Phys 86, April-June 2014
- Numata K, Kemery A, Camp J, Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, Phys Rev Lett 93(25) 250602, December 2004.
- P. R. Saulson, Thermal Noise in Mechanical Experiments, Phys Rev D 42(8), October 1990.
- A. van der Ziel, Unified Presentation of $1 / f$ Noise in Electronic Devices: Fundamental $1 / f$ sources, Proc IEEE 76(3), March 1988
- L. K. J. Vandamme, G. A. Trefan, A review of $1 / f$ noise in bipolar transistors, Fluct Noise Lett 1(4) 2001
- M. B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev Modern Phys 60(2) p.537-571, April 1988

The Rothe Dahlke model

e and i are the rms noise in 1 Hz bandwidth

Noise is modeled as a voltage generator $e(t)$ and a current generator $i(t)$

Consequences

- The golden rule $Z_{L}=Z_{G}^{*}$ is broken
- Three different impedance-matching criteria at Port 1 (the device is the load)
- Lowest noise: $Z_{G}=e_{n} / i_{n}$
- Maximum power: $Z_{L}=Z_{G}^{*}$
- Highest Signal-To-Noise Ratio (SNR): something in between

Noise in bipolar transistors

White noise
$e_{n} \rightarrow$ thermal noise in $R_{B B}$,

$$
(500 \Omega \rightarrow 2.9 \mathrm{nV} / \sqrt{\mathrm{Hz}})
$$

i_{n} - shot noise of I_{B} (note that $I_{B} \ll I_{C}$)

$$
(1 \mu \mathrm{~A} \rightarrow 0.57 \mathrm{pA} / \sqrt{\mathrm{Hz}})
$$

Flicker noise
Mainly the $1 / f$ of the base current

Optioual.Bulk

Noise in operational amplifiers

$a \oplus b=(1 / a+1 / b)^{-1}$

(+thermal)

Need to design precision electronics?

- D. Feucht, Analog Circuit Design Series, 4 volumes, SciTech 2010, ISBN 978-1-891121-XY-Z (old school but great)
- S. Franco S, Design with operational amplifiers and analog integrated circuits 4ed, McGraw Hill 2015, ISBN 978-0-07-802816-8 (best for designing with operational amplifiers)
- P. Horowitz, W. Hill, The Art of Electronics 3ed, Cambridge 2015, ISBN 978-0-521-80926-9 (Bible of instrument design, physical insight)
- Tietze U, Schenk C, Gamm E - Electronic Circuits 2ed - Springer 2007, ISBN 978-3-540-78655-9

Noise resistance

$$
R_{e q}=R_{P}+\left(R_{N} \oplus R_{F}\right)
$$

Voltage

$$
V=V_{O S}+R_{P} I_{P}-\left(R_{N} \oplus R_{F}\right) I_{N}
$$

Split I_{N} and I_{P} into offset and bias, $I_{O S} \pm \frac{1}{2} I_{B}$
Bias $I_{B}=\frac{1}{2}\left(I_{P}-I_{N}\right)$, Offset $\mathrm{I}_{\mathrm{OS}}=I_{P}-I_{N}$

Total effect

$V=V_{O S}+$
$+\frac{1}{2}\left[R_{P}-\left(R_{F} \oplus R_{N}\right)\right] I_{B}+$
$+\left[R_{P}+\left(R_{N} \oplus R_{F}\right)\right] I_{O S}$

Obvious extension to noise

$$
V^{2}=\sum_{i} V_{i}^{2}
$$

Noise power vs R

How it is shown
What it means

The Enrico's low-level near-DC design

- Try a few designs based on different criteria
- Give a score to each feature
- Don't look down at not-so-important parameters
- Let beginners believe that only a small number of parts are important in precision electronics

Featured reading, low white noise and low $1 / f$ noise design
E. Rubiola, F. Lardet-Vieudrin, Low flicker-noise amplifier for 50Ω sources, Rev. Scientific Instruments 75(5) p.1323-1326, May 2004
Featured reading, random walk and aging
E. Rubiola, C. Francese, A. De Marchi, Long-Term Behavior of Operational Amplifiers, IEEE T IM 50(1) p.89-94, February 2001

Special cases

Extremely low current

- Charge amplifier (AD549, bias $\approx 100 \mathrm{e} / \mathrm{s} \mathrm{rms}$)
- Don't assume that insulators do insulate
- Prevent leakage with layout rules and guarding
- Narrow bandwidth only
- Polymers take in vibes (piezoelectricity)

Extremely low voltages

- Chopper (switching) amplifier (AD8628 $\approx 2 \mathrm{nV} / \mathrm{K}$ thermal)
- Bandwidth limited by the chopper frequency
- Thermocouples (Seebeck effect) are everywhere (soldering alloy, O_{2} in Cu cables)
- Polymers take in vibes (electrostriction/piezoelectricity)

Highest gain accuracy

- Use Vishay resistor pairs (thermally compensated ratio)
- Unsuspected effects
- Common mode rejection extremely critical
- Open loop gain of OAs affects the accuracy
- Thermal feedback inside OAs due to the power dissipated in the output stage
- ...and others

Lowest noise

- The choice of all resistances depends on e_{n} and i_{n}
- Bipolar transistor are better than field-effect transistors
- The design for lowest white or lowest $1 / \mathrm{f}$ is not the same
- PNP amplifiers feature lower 1/f noise

Photodiode signal

- The photodiode has high output impedance (current generator with a capacitance in parallel)
- Special design rules (Read J. G. Graeme, Photodiode amplifiers, McGraw Hill 1995, ISBN 0-07-024247-X)

Highest speed (video amplifier)

- Current feedback amplifiers (CFA, the bandwidth does not decrease with the gain)
- Higher noise

Highest speed (video amplifier) without CFAs

- Takes OPAs with extremely high gain-bandwidth product
- Self oscillations difficult to prevent (simulation must include L and C associated to the PCB

Low-frequency shielding

Electric shielding is poor

- Skin effect

$$
\delta=\sqrt{\frac{2 \rho}{\omega \mu}} \quad \text { for } \omega \ll 1 / \rho \epsilon
$$

In Copper
9.2 mm at 50 Hz
2.06 mm at 1 kHz
$\omega=$ angular frequency
$\rho=$ resistivity
$\mu=$ magnetic permeability
$\epsilon=$ electric permittivity

Magnetic shield is effective

- Mumetal
- Various compositions, about Ni 77\%, Fe 16\%, Cu 5\%, Cr 2\%
- Ductile/malleable
- Permalloy
- Ni 80\%, Fe 20\%,
- $\mu_{r}=10^{5}$
- Require annealing
- Suffer shocks/acceleration

Guarding and shielding

RF in cables \& twisted pairs propagates as a field cutoff frequency $f_{c}=2 . . .10 \mathrm{kHz}$ ground loops allowed (far) beyond f_{c}

TWISTED PAIR

Featured readings
H. W. It, Electromagnetic Compatibility Engineering, Wiley 2009, ISBN 978-0-470-18930-6
C. R. Paul, Introduction to Electromagnetic Compatibility, Wiley 2006, ISBN 978-0-471-75500-5

Printed circuit boards

Inverting amplifier

Standard operational amplifier, 8 -pin DIL package, top view

Non inverting amplifier

Leture
fento-st

- - - SCIENCES \& TECHNOLOGIES

Lecture 3
 Scientific Instruments \& Oscillators

Lectures for PhD Students and Young Scientists

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Contents

- Noise in RF/microwave devices (cont)
- Photodetectors
- Analog-to-digital and digital-to-analog conversion

Equivalent noise temperature

Thermal noise

$$
S(v)=\frac{h v}{e^{h v / k T}} \quad S(v)=k T \quad \text { constant, for } h v \ll k T
$$

Ta is the equivalent noise temperature of the amplifier defined in specified conditions (physical temperature and input resistance)

Equivalent temperature $\quad T_{a}$ defined by $S(v)=k\left(T_{a}+T_{r}\right)$

- Warning: the noise temperature a radioengineering concept
- The physical nature of noise does not matter
- Often misleading in optics: the shot noise contributes to the equivalent temperature

Homework

- Work out the noise temperature of the operational amplifier at $R_{\text {best }}=e_{n} / i_{n}$
- Calculate $T_{\text {eq }}$ for the OP27 and the LT1028
- You should find almost the same $T_{\text {eq }}$, despite the fact that the noise of the two amplifier is so different.
- Can you figure out why?

Noise factor and noise figure

$$
\text { Noise factor } \quad F=\frac{\mathrm{SNR}(\mathrm{out})}{\mathrm{SNR}(\mathrm{in})} \quad \text { general definition } \quad F=\frac{\mathrm{SNR}_{\mathrm{out}}}{\mathrm{SNR}_{\mathrm{in}}}
$$

Noise Figure

$N F=10 \log _{10}(F)$

$$
\begin{gathered}
k T_{0}=4 \times 10^{-21} \mathrm{~J} \\
-174 \mathrm{dBm} / \mathrm{Hz} \\
290 \mathrm{~K}\left(17^{\circ} \mathrm{C}\right) \text { is a } \\
\text { convenient round number }
\end{gathered}
$$

Assume that the whole circuit is at the reference temperature $T_{0}=290 \mathrm{~K}\left(17{ }^{\circ} \mathrm{C}\right)$
The total noise referred to the amplifier input is $F k T_{0}$

$$
\begin{gathered}
F k T_{0}=k T_{e}=k\left(T_{a}+T_{0}\right), \quad T_{0}=290 \mathrm{~K} \\
F=\frac{\left(T_{a}+T_{0}\right)}{T_{0}} \quad \text { and } \quad T_{a}=(F-1) T_{0}
\end{gathered}
$$

Warning: the noise figure is a radio-engineering concept, may be misleading in optics
$A=$ voltage gain
$A^{2}=$ power gain

$$
F=F_{\uparrow}^{F_{1}}+\frac{\left(F_{2}-1\right)}{A_{1}^{2}}+\frac{\left(F_{3}-1\right)}{A_{1}^{2} A_{2}^{2}}+\cdots
$$

Caveat

- Impedance matching not included
- Three different conditions
- Max power transfer
- Lowest noise
- Highest SNR

POI - Thermal noise of a dissipative device

$$
S(f)=A^{2} k T_{i}+\left(1-A^{2}\right) k T_{a}
$$

Describes noise in

- Cables
- Antennas
- Propagation in lossy medium

Arno A. Penzias and Robert W. Wilson (Nobel in Physics, 1978) knew about noise temperature when they measured the background cosmic radiation

- Noise contribution of the input resistor
- The attenuator makes no difference between "noise" and "signal"
- The input signal is "amplified" by a factor $A^{2}<1$
- Noise contribution of the attenuator
- At uniform temperature T, the sum of the contributions must be $k T$
- The input contributes $A^{2} k T$
- The attenuator contributes the complement $\left(1-A^{2}\right) k T$
- The factors A^{2} and $1-A^{2}$ do not depend on temperature

Photodiode

Fast photodiodes

Quantum efficiency and noise

High-speed PIN photodetector
loss

$$
\begin{array}{cl}
\text { Shot Noise } & \\
\bar{I}=\eta e \phi=\frac{\eta e}{h v} \bar{P}_{\lambda} & \text { Current } \\
S_{I}(f)=2 e \frac{\eta e}{h \nu} \bar{P}_{\lambda} \mathrm{A}^{2} / \mathrm{Hz} & \text { Current PSD } \\
N_{s}=2 e \frac{\eta e}{h \nu} R \bar{P}_{\lambda} \mathrm{W} / \mathrm{Hz} & \text { Output-power PSD }
\end{array}
$$

Shot noise and thermal noise of the resistor

$$
2 q I R=k T
$$

$$
I=\frac{k T}{2 e R} N_{s}=N_{t} \quad \text { threshold, shot = thermal }
$$

ϕ photons / s
$\eta \phi$ detected, $(1-\eta) \phi$ lost
$\phi=\frac{P}{h v}$
$T_{\text {eq }}=\frac{2 e l}{k}$
equivalent temperature !!!

Photodetector signal and noise

Photodetector signal

$$
I=\rho P=\frac{\eta e}{h v} P
$$

Noise: shot, dark current, thermal (load), $I_{S} \equiv I$

$$
S_{I}=2 e\left(I_{s}+I_{d}\right)+4 k T / R\left[\mathrm{~A}^{2} / \mathrm{Hz}\right]
$$

Shot is dominant at high P

$$
S_{I}=2 e I=\frac{2 e^{2} \eta P}{h v}
$$

Threshold $S_{\text {sh }}=S_{\text {th }}$,

$$
P_{\mathrm{th}}=2 \frac{h v}{e^{2} \eta} \frac{k T}{R}
$$

Thumb rule: $\mathrm{P} \approx 1 \mathrm{~mW}, 1.5 \mu \mathrm{~m}, 50 \Omega, 300 \mathrm{~K}$

Noise Equivalent Power (NEP)

responsivity

The output can be I, V, or any other quantity (including a number at the output of an ADC)

```
Don't mistake
optical power }P\mathrm{ at the input
signal power }\mp@subsup{\sigma}{s}{2}\mathrm{ at the output
noise power }\mp@subsup{\sigma}{n}{2}\mathrm{ at the output
```

- Radiometric concept
- Applies to quantum detectors, bolometers, and any other radiation detector

The NEP is the input power in that gives
SNR = 1 (Signal-to-Noise Ratio) in 1 Hz bandwidth

$$
\mathrm{NEP}^{2}=\frac{P^{2}}{\Delta f} \quad \text { at } \quad \sigma_{n}^{2}=\sigma_{s}^{2}
$$

Example: Photodiode

$$
\sigma_{s}^{2}=I^{2}=\left(\frac{e \eta P}{h v}\right)^{2} \quad \sigma_{n}^{2}=S_{I}(f) \Delta f
$$

NEP in photodetectors

Low power, thermal region

$$
S_{I}=\frac{4 k T}{R}
$$

$(\text { signal) })^{2}=(\text { noise })^{2}$ in Δf
$\left(\frac{e \eta P}{h v}\right)^{2}=\frac{4 k T}{R} \Delta f$
$\frac{P^{2}}{\Delta f}=\frac{h^{2} v^{2}}{e^{2} \eta^{2}} \frac{4 k T}{R}$

$$
\mathrm{NEP}=2 \frac{h v}{e \eta} \sqrt{k T / R}
$$

Thumb rule:
NEP $=1.8 \times 10^{-11} \mathrm{~W} / \mathrm{vHz}$,
$1.5 \mu \mathrm{~m}, 50 \Omega, 300 \mathrm{~K}, \eta=0.8$

High power, shot region

$$
S_{I}=2 \frac{e^{2} \eta P}{h v}
$$

$$
\left(\text { signal }^{2}\right)^{2}=(\text { noise })^{2} \text { in } \Delta f
$$

$$
\left(\frac{e \eta P}{h v}\right)^{2}=2 \frac{e^{2} \eta P}{h v} \Delta f
$$

$$
\text { do not simplify } P
$$

$$
\frac{P^{2}}{\Delta f}=\frac{h^{2} v^{2}}{e^{2} \eta^{2}} 2 \frac{e^{2} \eta P}{h v}
$$

$$
\mathrm{NEP}=\sqrt{2 \frac{h v}{\eta} P}
$$

Thumb rule:
NEP $=1.8 \times 10^{-11} \mathrm{~W} / \mathrm{vHz}$,
$1.5 \mu \mathrm{~m}, \eta=0.8, \mathrm{P}=1 \mathrm{~mW}$

Analog-to-Digital Conversion

ADCs and DACs

analog $\underbrace{\text { ADC }}_{\text {in }}$

in $\underbrace{\text { DAC }}_{\text {clock }}$ analog

Featured reading: Kester W (ed), Analog-Digital Conversion,
Analog Devices 2004, ISBN 0-916550-27-3. ©AD, but free of charge pdf

This page contains
copyrighted material
(free-of-charge origin)

Basic Non-Idealities

Variance (Signal Power)

The variance σ^{2} (power P) of a signal can be evaluated in
(i) time domain, (ii) frequency domain or (iii) probability, and the result is the same

Parseval

 Theorem
$\underset{\text { domain }}{\text { Time }} \quad \sigma^{2}=\frac{1}{T} \int_{0}^{T}|x(t)-\mu|^{2} d t$

Spectrum

$$
\sigma^{2}=\int_{0}^{\infty} S(f) d f
$$

Probability

$$
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) d x
$$

Khinchin Theorem

Ultimate Limits

Quantization Noise

Analog-to-digital conversion introduces a
quantization error $x[-V L S B / 2 \leq x \leq+V L S B / 2]$
n-bit conversion: $V_{\mathrm{LSB}}=\frac{V_{\mathrm{FSR}}}{2^{n}}$

Sampling frequency is f_{s}, not v_{S}

Quantization \& Sinusoidal Signals

Assume that the noise power is equally distributed between 0 and $B=\mathrm{f}_{s} / 2$
This is not true when signal and clock are highly coherent (Widrow-Kollar, Appendix G)
Provisionally, take uniform distribution

$$
P_{0}=\frac{V_{p p}^{2}}{8}=\frac{a^{2} V_{\mathrm{FSR}}^{2}}{8}
$$

$P=\frac{V_{p p}^{2}}{8}=\frac{a^{2} V_{\mathrm{FSR}}^{2}}{8} \quad$ Signal power
$\sigma^{2}=\frac{V_{\mathrm{LSB}}^{2}}{12}$

$$
\frac{V_{\mathrm{FSR}}}{V_{\mathrm{LSB}}}=2^{n}
$$

Quantization

$$
\mathrm{SNR}=\frac{P}{\sigma^{2}}=\frac{3}{2} 2^{2 n} a^{2}
$$

Often seen as $1.76+6.02 \log _{10}(n) \mathrm{dB} \quad$ (with $a=1$)

$$
\frac{N}{P}=\frac{V_{\mathrm{FSR}}^{2}}{6 \times 2^{2 n} f_{s}} \frac{8}{a^{2} V_{\mathrm{FSR}}^{2}}
$$

$$
\frac{N}{P}=\frac{4}{3} \frac{1}{2^{2 n} a^{2} f_{s}}
$$

Transition Noise

- Actual noise includes quantization, analog noise, and distortion

$$
\sigma^{2}=\sigma_{q}^{2}+\sigma_{a}^{2}+\sigma_{d}^{2}
$$

- Random distribution of output N
- Metrology suggests to make σ_{q}^{2} negligible
- BUS bits are cheap
- Analog precision complex / fundamental limits

Resolution and Entropy

Entropy (information theory)

$$
H=-\sum_{i=1}^{N} p_{i} \log _{2}\left(p_{i}\right) \quad[\mathrm{bit}]
$$

Example: 1024 equally probable values,
i.e. $p_{1}=1 / 1024, \log _{2}\left(p_{i}\right)=-10, N=1024$

$$
H=-1024\left[\frac{1}{1024} \times(-10)\right]=10 \mathrm{bit}
$$

Non-uniform probability $\rightarrow H<H_{\text {max }}$
Entropy in ADC

$$
n=\log _{2}\left(1+\frac{V_{\mathrm{FSR}}}{V_{\mathrm{LSB}}}\right)
$$

The number n of bits is the same thing as H (assumes uniform quantization)

Unit	bit	nat	Hartley
Log base	2	e	10

Exercise

Calculate the entropy of a so-called " $31 / 2$ digit" voltmeter

- Full scale 2 V , resolution 1 mV
- Actual readout -1.999 V ... +1.999 V

Give the result in digit (!!!) and bit

Entropy and Transition Noise

This is an approximation - Reality is way more complex, read Widrow \& Kolar

$$
\begin{aligned}
& H=\log _{2}\left(1+\frac{V_{F S R}}{V_{L S B}}\right) \\
& \text { Replace } V_{L S B} \rightarrow \sqrt{12} \sigma \\
& H=\log _{2}\left(1+\frac{V_{F S R}}{\sqrt{12} \sigma}\right)
\end{aligned}
$$

Take this as a heuristic explanation.
This approximation is reasonably close to the exact result.

Sornething Funny: The Maxwell's Demon

- Intriguing paradox
- Many scientists spent time and brainpower
- Theories: photon energy needed to probe the particles, etc.
- Ultimately, the ND shows the equivalence between thermodynamic entropy and information entropy
- W micro states with probability $1 / W$

$$
H=-\sum_{i=1}^{W} p \log (p)=\log (W)
$$

Units k per nat (nat is like bit, but in natural base)

$$
H=k \log (W)
$$

The demon
checks on the speed and allows
cold particles —> <- hot particles
The thermodynamical equilibrium is broken

Transition Noise Measurement

The differential clock jitter introduces additional noise due to the asymmetry between AM and PM

At 10 MHz input, the effect of $\approx 100 \mathrm{fs}$ jitter does not show up

Effective No of Bits (ENoB)

Usually written as

$$
\mathrm{ENOB}=\frac{(\mathrm{SINAD})_{\mathrm{dB}}-1.76}{6.02}
$$

Lecture

Supplemental Material

Digital Filter and Decimation

-Convolution with low-pass $h(t)$
-127 coeff. Blackman-Harris kernel provides 70 dB stop-band attenuation

Down Sampling (Example)

- DF is the Decimation Factor $\mathrm{DF}=B_{\text {max }} / B$ Bandwidthratio
- A factor 4 in $B_{\text {max }} / B$ results in 1 bit resolution increase

ADS1262, Texas Instrument LTC2508-32, Linear Technology / Analog Devices

Dithering

Historical challenge: resolution of a fraction of $V_{\text {LSB }}$

- Add white noise and average
- Estimate the center of the distribution

Sampling Frequency

The observed floor fits the theory
We always use the highest sampling frequency

Selected High-Speed ADCs

ADC type	AD9467 / Single (Alazartech board)	LTC2145 / Dual Red Pitaya board	LTC2158 / Dual Eval board
Platform	Computer	Zynq (onboard)	Zynq (separated)
Sampling f Input BW	250 MHz	125 MHz 750 MHz	310 MHz
Bits / ENoB	$16 / 12$	$14 / 12$	1250 MHz
Expected noise (2 Vfsr)	$-158 \mathrm{dBV} / \mathrm{Hz}$	$-155 \mathrm{dBV} / \mathrm{Hz}$	$-159 \mathrm{dBV} / \mathrm{Hz}$
Delay \& Jitter	$1.2 \mathrm{~ns} \& 60 \mathrm{fs}$	$0 ? \& 100 \mathrm{fs} \mathrm{diff}$ $0 ? ~ \& ~ 80 ~ f s ~ s i n g l e ~$	$1 \mathrm{~ns} \& 150 \mathrm{fs}$
Power supply	1.8 V \& 3.3 V 1.33 W	1.8 V 190 mW	1.8 V

Dissipation is relevant to thermal stability
For reference, 100 fs jitter is equivalent to

carrier f	$\varphi \mathrm{rms}$	$\mathrm{S} \varphi(f)=\mathrm{b}_{0}$	$10 \mathrm{Log} 10[\mathrm{~L}(\mathrm{f})]$
10 MHz	$6.3 \mu \mathrm{rad}$	$4 \times 10^{-18} \mathrm{rad}^{2} / \mathrm{Hz}$	$-177 \mathrm{dBc} / \mathrm{Hz}$
100 MHz	$63 \mu \mathrm{rad}$	$4 \times 10^{-17} \mathrm{rad}^{2} / \mathrm{Hz}$	$-167 \mathrm{dBc} / \mathrm{Hz}$

LT 2158 Noise

LT2145 (Red Pitaya) Noise

AD9467 (Alazartech) Noise

ADC Architectures

Featured reading: W Kester (ed), Analog-Digital Conversion, Analog Devices 2004, ISBN 0-916550-27-3. ©AD, but free of charge pdf

Read it again, again and again

Flash

- Fastest, sub-nanosecond

Successive Approximation (SAR)

- High accuracy
- High resolution, up to 32 bits
- Testing n bits takes n clock cycles
- Latency and downsampling
- Slow, full accuracy and resolution
- Moderate, at cost of accuracy
- The internal DAC uses switched capacitors (resistor network was obsoleted long ago)
- Tracking operation possible
- Faster, but limited slew rate

Subranging

- Pipeline
- Great speed/resolution tradeoff

Counting

A few techniques - Analog integrator

An education version of these converters is in E. Rubiola, Laboratorio di misure elettroniche (in Italian), CLUT, Torino, 1993. ISBN 88-7992-081-2

Sigma Delta

- High resolution and low power for cheap
- Simple ideas, but complex mathematics
- Noise shaping

Delta modulation - Kester, Fig.3.121(A)

Featured reading: W Kester (ed), Analog-Digital Conversion, Analog Devices 2004, ISBN 0-916550-27-3. ©AD, but free of charge pdf

Lecture 4
 Scientific Instruments \& Oscillators

Lectures for PhD Students and Young Scientists

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Contents

- Fourier statistics
- The cross spectrum method (theory)
- Applications of the cross spectrum method

Power Spectral Density (PSD) and its Estimation

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France INRiM, Torino, Italy

Physical concept of spectrum

More precisely, Power Spectral Density

- The PSD is the distribution of power vs. frequency (power in 1-Hz bandwidth)
- The PS is the distribution of energy vs. frequency (energy in 1-Hz bandwidth)
- Power (energy) in physics is a square (integrated) quantity
- PSD $\rightarrow \mathrm{W} / \mathrm{Hz}$, or $\mathrm{V}^{2} / \mathrm{Hz}, \mathrm{A}^{2} / \mathrm{Hz}, \mathrm{rad}^{2} / \mathrm{Hz}$ etc.

$$
S_{v}(f)=\frac{\left\langle v_{B}^{2}(f)\right\rangle}{B}
$$

$$
\text { Discrete: } \Delta f \text { is the resolution }
$$

$$
\text { Continuous: } \Delta f \rightarrow d f
$$

average power in the bandwidth B centered at f

The power spectral density

for stationary random process $x(t) \leftrightarrow X(f)$

$$
\begin{aligned}
\mathcal{C}_{x}(\tau) & =\mathbb{E}\left\{[\mathrm{x}(t)-\mu][\mathrm{x}(t-\tau)-\mu]^{*}\right\} \\
\mu & =\mathbb{E}\{\mathrm{x}\} \\
S(\omega) & =\mathcal{F}\{\mathcal{C}(\tau)\}=\int_{-\infty}^{\infty} \mathcal{C}(\tau) e^{-i \omega \tau} d \tau
\end{aligned}
$$

Autocovariance function

Improperly referred to as the correlation, denoted with $\mathrm{R}_{\mathrm{xx}}(\tau)$

PSD (two-sided)

$$
\mathcal{C}_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}[x(t)-\mu][x(t-\tau)-\mu]^{*} d t \quad \begin{aligned}
& \text { For ergodic process, interchange } \\
& \text { ensemble and time average } \\
& \text { process } \mathrm{x}(t) \rightarrow \text { realization } x(t)
\end{aligned}
$$

$$
S_{x}^{I I}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T} X_{T}(\omega) X_{T}^{*}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(\omega)\right|^{2}
$$

Wiener Khinchin theorem, if the process is stationary and ergodic, $S_{x}(f)$ can be calculated from the Fourier transform of a realization

In experiments, we use the single-sided PSD averaged on m realizations

$$
\begin{aligned}
& S^{I}(f)=2 S^{I I}(\omega / 2 \pi) \\
& f>0
\end{aligned}
$$

$$
S_{x}(f)=\frac{2}{T}\left\langle X_{T}(f) X_{T}^{*}(f)\right\rangle_{m}
$$

DFT, FFT, FFTW, SFFT

The Discrete Fourier Transform (DFT) approximates the (continuous) FT

$$
\begin{aligned}
& X\left(\frac{n}{N T}\right)=\sum_{k=0}^{N-1} x(k T) e^{i 2 \pi n k / N} \\
& T=\text { sampling interval, } f_{s}=1 / T \\
& N=0 \ldots N-1 \text { integer frequency, } f=n / N T
\end{aligned}
$$

- The direct computation of the DFT takes \approx N2 multiplications
- The FFT is an algorithm for Fast computation of the DFT that takes $\approx \mathrm{N} \log (\mathrm{N})$ multiplications
- The FFTW, "the Fastest Fourier Transform in the West," is an even faster. $\mathrm{N} \log (\mathrm{N})$ multiplications (M. Frigo, S.G. Johnson, MIT) See http://fftw.org/
- SFFT "faster-than-fast" Sparse (FFT, D.Katabi, P.Indyk, MIT) See http://groups.csail.mit.edu/netmit/sFFT/
- For the general user (does not implement FT algorithms), the difference between DFT, FFT, and FFTW is (at most) computing time

Estimation of $\left|S_{x x}(f)\right|$

Running the measurement, m increases and $S_{x x}(f)$ shrinks => better confidence level

Power spectral density $S_{x x}(f)$

$x(t) \leftrightarrow X(f)$ is white Gaussian noise Take one frequency, $S(f) \rightarrow S$ Same applies to all frequencies

Normalization: in 1 Hz bandwidth
$\mathbb{V}\{X\}=1$, equally split between $\mathfrak{R}\}$ and $\mathfrak{\Im \{ \}}$
thus $\mathbb{V}\left\{X^{\prime}\right\}=\mathbb{V}\left\{X^{\prime \prime}\right\}=1 / 2$

$$
\left\langle S_{x x}\right\rangle_{m}=\frac{2}{T}\left\langle X X^{*}\right\rangle_{m}
$$

$$
=\frac{2}{T}\left\langle\left(X^{\prime}+i X^{\prime \prime}\right) \times\left(X^{\prime}-i X^{\prime \prime}\right)\right\rangle_{m}
$$

$$
=\frac{2}{T}\left\langle\left(X^{\prime}\right)^{2}+\left(X^{\prime \prime}\right)^{2}\right\rangle_{m}
$$

white, Gaussian,

$$
\mu=0, \quad \sigma^{2}=1 / 2
$$

Conclusion

$\frac{\operatorname{dev}}{\operatorname{avg}}=\sqrt{\frac{1}{m}} \quad$| the $S_{x x}(f)$ track |
| :--- |
| shrinks as $1 / \sqrt{m}$ |

PSD $S_{x x}(f)$

Normalization: in 1 Hz bandwidth $\mathbb{V}\{A\}=1, \mathbb{V}\{C\}=\kappa^{2}$ $\mathbb{V}\left\{A^{\prime}\right\}=\mathbb{V}\left\{A^{\prime \prime}\right\}=1 / 2$ and $\mathbb{V}\left\{C^{\prime}\right\}=\mathbb{V}\left\{C^{\prime \prime}\right\}=\kappa^{2} / 2$

$$
\begin{gathered}
\left\langle S_{x x}\right\rangle_{m}=\frac{2}{T}\left\langle X X^{*}\right\rangle_{m}=\frac{2}{T}\left\langle\left(X^{\prime}+i X^{\prime \prime}\right) \times\left(X^{\prime}-i X^{\prime \prime}\right)\right\rangle_{m} \\
X=\left(C^{\prime}+i C^{\prime \prime}\right)+\left(A^{\prime}+i A^{\prime \prime}\right)
\end{gathered}
$$

$\mathfrak{R}\left\{\left|S_{x x}\right|\right\} \rightarrow$

$$
\mathfrak{J}\left\{\left|S_{x x}\right|\right\}=0
$$

$$
\mu=1+\kappa^{2} \quad \sigma^{2}=\frac{1+\kappa^{2}+\kappa^{4}}{m} \quad \frac{\sigma}{\mu}=\sqrt{\frac{1+\kappa^{2}+\kappa^{4}}{m}} \frac{1}{1+\kappa^{2}}
$$

$$
\frac{\sigma}{\mu} \simeq \frac{1}{\sqrt{m}}\left[1-\frac{\kappa^{2}}{2}\right], \quad \kappa \ll 1
$$

the track
shrinks as $1 / \sqrt{m}$

Measurement of a small signal

$$
\begin{array}{ll}
C=0 & C \neq 0 \\
\mu=1 & \mu=1+\kappa^{2} \\
\sigma^{2}=\frac{1}{m} & \sigma^{2}=\frac{1+\kappa^{2}+\kappa^{4}}{m}
\end{array}
$$

The Dicke radiometer

Small m Contrast mot detected

Large m contrast well detected

Cross Spectrum Theory

Correlation Measurements

Read the tutorial
E. Rubiola, F. Vernotte, The crossspectrum experimental method, February 2010, arXiv:1003.0113 [physics.ins-det]

also crosstalk $\mathrm{d}(\mathrm{t})$

Two separate instruments measure the same DUT. Only the DUT noise is common		
noise measurements		
DUT noise, normal use	a, b, c	instrument noise, DUT noise
background, ideal case	$\begin{gathered} a, b \\ c=0 \end{gathered}$	instrument noise, no DUT
background, real case	$\begin{gathered} a, b \\ d \neq 0 \end{gathered}$	c is the correlated instrument noise Zero DUT noise

Cross PSD $S_{y x}(f)$ - Simplified

Read the tutorial

E. Rubiola, F. Vernotte, The cross-spectrum experimental method, February 2010, arXiv:1003.0113 [physics.ins-det]

$$
\begin{aligned}
& S_{y x}=\frac{2}{T}\left\langle(B+C)(A+C)^{*}\right\rangle_{m} \\
&=\frac{2}{T}\left\langle B A^{*}+B C^{*}+C A^{*}+C C^{*}\right\rangle_{m} \\
& \quad \text { rejected } \propto 1 / \sqrt{m}
\end{aligned}
$$

$$
\mathbb{E}\left\{S_{y x}\right\}=\frac{2}{T}\left\langle C C^{*}\right\rangle_{m}=S_{c} \quad S_{c} \in \mathbb{R}
$$

$$
\mathbb{V}\left\{\left\langle S_{y x}\right\rangle_{m}\right\}=\frac{1}{m}
$$

$$
\mathbb{V}\left\{\left\langle\Re\left\{S_{y x}\right\}\right\rangle_{m}\right\}=\frac{1}{2 m}
$$

The $\widehat{S_{y x}}=\left|S_{y x}\right|$ estimator takes in the full noise

The $\widehat{S_{y x}}=\mathfrak{R}\left\{S_{y x}\right\}$ estimator takes in half the noise

A correlated disturbing term

Same role of $c(t)$, but for the sign ς

$$
S_{y x}=\frac{2}{T}\left[B+C+\varsigma_{y} D\right]\left[A+C+\varsigma_{x} D\right]^{*}
$$

After averaging

Also $\mathfrak{R}\left\{S_{y x}\right\} \rightarrow S_{c}+\varsigma S_{d}$ and $\Im\left\{S_{y x}\right\} \rightarrow 0$
$\varsigma>0 \rightarrow$ noise over-estimation

- We may accept this
$\varsigma<0 \rightarrow$ noise under-estimation
- May be embarrassing
$S_{c}+\varsigma S_{d}<0 \rightarrow$ nonsense
- The disturbing term prevail

The common superstition that

- The instrument adds its own noise
- Over-estimation of the DUT noise
is wrong in the case of cross spectrum (and covariances)

$S_{y x}(f)$ with a correlated term

$A, B \longrightarrow$ instrument background
$C \rightarrow$ DUT noise
channel $1 \quad X=A+C$
channel $2 \quad Y=B+C$
A, B, C are independent Gaussian processes
$\mathfrak{R}\}$ and $\mathfrak{J}\}$ are independent Gaussian processes

Normalization: in 1 Hz bandwidth
$\mathbb{V}\{A\}=\mathbb{V}\{B\}=1$
$\mathbb{V}\left\{A^{\prime}\right\}=\mathbb{V}\left\{A^{\prime \prime}\right\}=\mathbb{V}\left\{B^{\prime}\right\}=\mathbb{V}\left\{B^{\prime \prime}\right\}=1 / 2$
$\mathbb{V}\{C\}=\kappa^{2}$
$\mathbb{V}\left\{C^{\prime}\right\}=\mathbb{V}\left\{C^{\prime \prime}\right\}=\kappa^{2} / 2$

$$
v i v s-v i c s-n / 2
$$

Cross-Spectrum

$$
\left\langle S_{y x}\right\rangle_{m}=\frac{2}{T}\left\langle Y X^{*}\right\rangle_{m}=\frac{2}{T}\left\langle\left(Y^{\prime}+i Y^{\prime \prime}\right) \times\left(X^{\prime}-i X^{\prime \prime}\right)\right\rangle_{m}
$$

Expand using

$$
X=\left(A^{\prime}+i A^{\prime \prime}\right)+\left(C^{\prime}+i C^{\prime \prime}\right) \quad \text { and } \quad Y=\left(B^{\prime}+i B^{\prime \prime}\right)+\left(C^{\prime}+i C^{\prime \prime}\right)
$$

Split Syx into three sets

$S_{y x}$ with correlated term $\kappa \neq 0$

Example / Experiment

Rathe Dahlke model $e_{M} \quad$ statistically indep. $R i_{M} \rightarrow 0$ JFET amplifier

	Single ch.	Cross	
input	4.6	2.25	$\mathrm{nV} / \sqrt{\mathrm{H}+}$
out put	5.6	11.5	$\mu \mathrm{~V} / \sqrt{\text { th }}$

Experiment - Noise of a 305Ω resistor

Estimator $\widehat{S_{y x}}=\mathfrak{R}\left\{S_{y x}\right\}$, and $\mathfrak{J}\left\{S_{y x}\right\}$
Estimator $\widehat{S_{y x}}=\left|S_{y x}\right|$, and $\left|S_{x}\right|$

Focus on \mathbb{E} and \mathbb{V}

	Term	\mathbb{E}	V	PDF	Note
\mathfrak{R}	$\begin{gathered} \left\langle B^{\prime} A^{\prime}+B^{\prime \prime} A^{\prime \prime}+B^{\prime} C^{\prime}+B^{\prime \prime} C^{\prime \prime}+C^{\prime} A^{\prime}+C^{\prime \prime} A^{\prime \prime}\right\rangle_{m} \\ \text { Bessel } K_{0}, \\ \text { Bessel } K_{0}, \end{gathered}$	0	$\frac{1+2 \kappa^{2}}{2 m}$	Gauss	average of zero-mean Gaussian processes
\mathfrak{J}	$\begin{gathered} \mu=0, \sigma^{2}=\kappa^{2} / 4 \quad \mu=0, \sigma^{2}=\kappa^{2} / 4 \\ \left\langle B^{\prime \prime} A^{\prime}+B^{\prime} A^{\prime \prime}+B^{\prime \prime} C^{\prime}+B^{\prime} C^{\prime \prime}+C^{\prime \prime} A^{\prime}+C^{\prime} A^{\prime \prime}\right\rangle_{m} \end{gathered}$	0	$\frac{1+2 \kappa^{2}}{2 m}$	Gauss	average of zero-mean Gaussian processes
\mathfrak{R}	$\left\langle C^{\prime 2}+C^{\prime \prime 2}\right\rangle_{m} \quad \begin{aligned} & \text { white, } \chi^{2}, 2 D F \\ & \mu=\kappa^{2}, \sigma^{2}=\kappa^{4} \end{aligned}$	κ^{2}	κ^{4} / m	$\begin{gathered} \chi^{2} \\ r=2 m \end{gathered}$	average of χ^{2} processes

Normalization: in 1 Hz bandwidth $\mathbb{V}\{A\}=\mathbb{V}\{B\}=1, \mathbb{V}\{C\}=\kappa^{2}$
$\mathbb{V}\left\{A^{\prime}\right\}=\mathbb{V}\left\{A^{\prime \prime}\right\}=\mathbb{V}\left\{B^{\prime}\right\}=\mathbb{V}\left\{B^{\prime \prime}\right\}=1 / 2$, and $\mathbb{V}\left\{C^{\prime}\right\}=\mathbb{V}\left\{C^{\prime \prime}\right\}=\kappa^{2} / 2$

Estimator $\hat{S}_{y x}=\mathfrak{R}\left\{\left\langle S_{y x}\right\rangle_{m}\right\}$

Best (unbiased) estimator

$$
\begin{aligned}
& \frac{T}{2} \Re\left\{\left\langle S_{y x}\right\rangle_{m}\right\}=\left\langle B^{\prime} A^{\prime}+B^{\prime \prime} A^{\prime \prime}+B^{\prime} C^{\prime}+B^{\prime \prime} C^{\prime \prime}+C^{\prime} A^{\prime}+C^{\prime \prime} A^{\prime \prime}\right\rangle_{m}+\left\langle C^{\prime 2}+C^{\prime \prime 2}\right\rangle_{m} \\
& \mathbb{E}=0, \mathbb{V}=\left(1+2 \kappa^{2}\right) /(2 m) \quad \begin{array}{l}
\mathbb{E}=\kappa^{2}, \mathbb{V}=\kappa^{4} / m \\
\mathbb{E}\{ \}=\kappa^{2} \\
\sqrt{\mathbb{V}\{ \}}=\sqrt{\frac{1+2 \kappa^{2}+2 \kappa^{4}}{2 m}} \simeq \frac{1+\kappa^{2}}{\sqrt{2 m}}
\end{array} \\
& \begin{array}{l}
\text { Noise }
\end{array} \\
& P_{P_{N}=\mathbb{P}\{\mathbf{x}<0\}=\frac{1}{2} \operatorname{erfc}\left(\frac{\kappa^{2}}{\sqrt{2} \sigma}\right)}
\end{aligned}
$$

$$
\frac{\sqrt{\mathbb{V}\}}}{\mathbb{E}}=\frac{\sqrt{1+2 \kappa^{2}+2 \kappa^{4}}}{\kappa^{2} \sqrt{2 m}} \simeq \frac{1+\kappa^{2}}{\kappa^{2} \sqrt{2 m}}
$$

Estimator $\hat{S}_{y x}=\left|\left\langle S_{y x}\right\rangle_{m}\right|, \kappa \rightarrow 0$

The default of most instruments

$$
\begin{array}{r}
\left|\left\langle S_{y x}\right\rangle_{m}\right|=\frac{2}{T} \sqrt{\left[\Re\left\{\left\langle Y X^{*}\right\rangle_{m}\right\}\right]^{2}+\left[\Im\left\{\left\langle Y X^{*}\right\rangle_{m}\right\}\right]^{2}} \\
\text { noise, Re signal }
\end{array}
$$

$\kappa \rightarrow 0$ Rayleigh distribution

$$
\begin{aligned}
& \frac{T}{2} \mathbb{E}\left\{\left|\left\langle S_{y x}\right\rangle_{m}\right|\right\}=\sqrt{\frac{\pi}{4 m}}=\frac{0.886}{\sqrt{m}} \\
& \frac{T}{2} \mathbb{V}\left\{\left|\left\langle S_{y x}\right\rangle_{m}\right|\right\}=\frac{1}{m}\left(1-\frac{\pi}{4}\right)=\frac{0.215}{m} \\
& \frac{\operatorname{dev}\left\{\left|\left\langle S_{y x}\right\rangle_{m}\right|\right\}}{\mathbb{E}\left\{\left|\left\langle S_{y x}\right\rangle_{m}\right|\right\}}=\sqrt{\frac{4}{\pi}-1}=0.523
\end{aligned}
$$

Ergodicity

Let's collect a sequence

of spectra

- Ergodicity —> Interchange
- time /ensemble statistics
- sequence-index i and frequency f.
- Same average and the deviation on
- frequency axis
- sequence of spectra

Example: $\left|S_{y x}\right|$

Measurement of $\left|S_{y x}\right|$ with $\kappa>0$

Running the measurement, m increases
$S_{x x}$ shrinks => better confidence level
Syx decreases => higher single-channel noise rejection

Measurement of $\mathfrak{R}\left\{S_{y x}\right\}$ with $\kappa>0$

Running the measurement, m increases
$S_{x x}$ shrinks => better confidence level
$S_{y x}$ decreases => higher single-channel noise rejection

Linear vs logarithmic resolution

Joining M values $\Rightarrow>$ background reduction of $M^{1 / 2}$ because $S\left(f_{j}\right), S\left(f_{k}\right), j \neq k$ are independent

Conclusions

- Rejection of the instrument noise
-AM noise, RIN, etc. -> validation of the instrument without a reference low-noise source
- Display quantities
$\left\langle\mathfrak{R}\left\{S_{y x}\right\}\right\rangle_{m}$ is the best estimator, fast and accurate $\left\langle\mathfrak{J}\left\{S_{y x}\right\}\right\rangle_{m}$ gives the background noise $\left|\left\langle S_{y x}\right\rangle_{m}\right|$ is a poor choice: biased, and 4-fold measurement time
- Applications in many fields of metrology

The cross spectrum method is magic
Correlated noise makes magic difficult

Appendix: Statistics

Boring but necessary exercises

Vocabulary of statistics

- A random process $\mathbf{x}(t)$ is defined through a random experiment e that associates a function $x_{\mathrm{e}}(t)$ to each outcome e.
- The set of all the possible $x_{\mathrm{e}}(t)$ is called ensemble
- The function $x_{\mathrm{e}}(t)$ is called realization or sample function.
- The ensemble average is called mathematical expectation $\mathbb{E}\}$
- A random process is said stationary if its statistical properties are independent of time.
- Often we restrict the attention to some statistical properties.
- Broadly similar to the physical concept of repeatability.
- A random process $\mathbf{x}(t)$ said ergodic if a realization observed in time has the statistical properties of the ensemble.
- Ergodicity makes sense only for stationary processes.
- Often we restrict the attention to some statistical properties.
- Broadly similar to the physical concept of reproducibility

Example: thermal noise of a resistor of value R

- The experiment e is the random choice of a resistor e
- The realization $x_{\mathrm{e}}(t)$ is the noise waveform measured across the resistor e
- We always measure $\left\langle x^{2}\right\rangle=4 k T R \Delta f$, so the process is stationary
- After measuring many resistors, we conclude that $\left\langle x^{2}\right\rangle=4 k T R \Delta f$ always holds. The process is ergodic.

A relevant property of noise

A theorem states that
there is no a-priori relation
between PDF ${ }^{1}$ and PSD

For example, white noise can originate from

- Poisson process (emission of a particle at random time)
- Random telegraph (random switch between two level)
- Thermal noise (Gaussian)

Why white Gaussian noise?

-Whenever randomness occurs at microscopic level, noise tends to be Gaussian (central-limit theorem)

- Most environmental effects are not "noise" in strict sense (often, they are more disturbing than noise)
- Colored noise types ($1 / f, 1 / f^{2}$, etc.) can be whitened, analyzed, and un-whitened
- Of course, WG noise is easy to understand

Zero-mean white Gaussian noise

$$
x(t) \leftrightarrow X(f)=X^{\prime}(f)+i X^{\prime \prime}(f)
$$

1. Both $x(t) \leftrightarrow X(f)$ are Gaussian
2. $X\left(f_{1}\right)$ and $X\left(f_{2}\right), f_{1} \neq f_{2}$
3. are statistically independent,
4. $\mathbb{V}\left\{X\left(f_{1}\right)\right\}=\mathbb{V}\left\{X\left(f_{2}\right)\right\}$
5. real and imaginary part:
6. X^{\prime} and $X^{\prime \prime}$ are statistically independent
7. $\mathbb{V}\left\{X^{\prime}\right\}=\mathbb{V}\left\{X^{\prime \prime}\right\}=\frac{1}{2} \mathbb{V}\{X\}$
8. $Y=X_{1}+X_{2}$
9. Y is Gaussian
10. $\mathbb{V}\{Y\}=\mathbb{V}\left\{X_{1}\right\}+\mathbb{V}\left\{X_{2}\right\}$
11. $Y=X_{1} X_{2}$
12. Y is Bessel K_{0}

13. $\mathbb{V}\{Y\}=\mathbb{V}\left\{X_{1}\right\} \mathbb{V}\left\{X_{2}\right\}$

Properties of parametric noise $x(t) \leftrightarrow X(f)=X^{\prime}(f)+i X^{\prime \prime}(f)$

1. Pair $x(t) \leftrightarrow X(f)$
2. there is no a-priori relation between the distribution of $x(t)$ and $X(f)$ (theorem)
3. Central limit theorem: $x(t)$ and $X(f)$ end up to be Gaussian
4. $X\left(f_{1}\right)$ and $X\left(f_{2}\right)$
5. generally, statistically independent
6. $\mathbb{V}\left\{X\left(f_{1}\right)\right\} \neq \mathbb{V}\left\{X\left(f_{2}\right)\right\}$ in general
7. Real and imaginary part, same frequency
8. $X^{\prime}(f)$ and $X^{\prime \prime}(f)$ can be correlated
9. in general, $\mathbb{V}\left\{X^{\prime}\right\} \neq \mathbb{V}\left\{X^{\prime \prime}\right\}$
10. $Y=X_{1}+X_{2}$, zero-mean independent Gaussian

$$
\mathbb{V}\{Y\}=\mathbb{V}\left\{X_{1}\right\}+\mathbb{V}\left\{X_{2}\right\}
$$

5. If X_{1} and X_{2} are zero-mean independent Gaussian
6. $Y=X_{1} X_{2}$ is zero-mean Bessel K
7. $\mathbb{V}\{Y\}=\mathbb{V}\left\{X_{1}\right\} \mathbb{V}\left\{X_{2}\right\}$

N degrees of freedom

Gaussian (normal) distribution

x is normal distributed with mean μ and variance σ^{2}

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \\
& \mathbb{E}\{f(x)\}=\mu \\
& \mathbb{E}\left\{f^{2}(x)\right\}=\mu^{2}+\sigma^{2} \\
& \mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=\sigma^{2}
\end{aligned}
$$

Sum and average of random variables

1. The central limit theorem states that

For large m, the PDF of the sum of m statistically
independent processes tends to a Gaussian distribution
2. Let $X=X_{1}+X_{2}+\cdots+X_{m}$ be the sum of m processes of mean $\mu_{1}, \mu_{2} \ldots \mu_{m}$ and variance $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots \sigma_{m}^{2}$. The process X tends to Gaussian PDF, expectation

Expectation $\mathbb{E}\{X\}=\mu_{1}+\mu_{2}+\cdots+\mu_{m}$
Variance $\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{m}^{2}$
3. The average $\langle X\rangle_{m}=\frac{1}{m}\left(X_{1}+X_{2}+\cdots+X_{m}\right)$ has Gaussian PDF,

$$
\begin{gathered}
\mathbb{E}\{X\}=\frac{1}{m}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{m}\right), \text { and } \\
\sigma^{2}=\frac{1}{m}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{m}^{2}\right)
\end{gathered}
$$

Children of the Gaussian distribution

$$
\begin{aligned}
& \text { Chi-square } \\
& \chi^{2}=\sum_{i} x_{i}^{2}
\end{aligned}
$$

Bessel K_{0}

$$
x=x_{1} x_{2}
$$

One-Sided
Gaussian
$x=\sqrt{x_{1}^{2}+x_{2}^{2}}$

Chi-square (χ^{2}) distribution

Definition

```
으ᄋ }\mp@subsup{x}{i}{}\mathrm{ are normal distributed variables
zero mean, and variance }\mp@subsup{\sigma}{}{2
```

$$
x^{2}=\sum_{i=1}^{+} x_{1}^{2}
$$

is χ^{2} distributed with r DF

Sum

The sum of $m \chi^{2}$-distributed variables

$$
\chi^{2}=\sum_{j=1}^{m} \chi_{j}^{2}, \quad r=\sum_{j=1}^{m} r_{j}
$$

has χ^{2} distribution with $r=m \mathrm{DF}$

$f(x)=\frac{x^{\frac{r}{2}-1} e^{-\frac{x^{2}}{2}}}{\Gamma\left(\frac{1}{2} r\right) 2^{\frac{r}{2}}} \quad x \geq 0$
$\mathbb{E}\{f(x)\}=\sigma^{2} r$
$\mathbb{E}\left\{[f(x)]^{2}\right\}=\sigma^{4} r(r+2)$
$\mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=2 \sigma^{4} r$

Averaging m complex χ^{2} variables

averaging m variables $|X|^{2}$, complex $X=X^{\prime}+i X^{\prime \prime}$, yields a χ^{2} distribution with $r=2 m$

$$
\begin{aligned}
& \frac{1}{m} \chi^{2}=\frac{1}{m} \sum_{j=1}^{m}\left(X_{j}^{\prime}\right)^{2}+\left(X_{j}^{\prime \prime}\right)^{2} \\
& \mathbb{E}\left\{\frac{1}{m} f(x)\right\}=\frac{\sigma^{2} r}{m}=2 \sigma^{2} \\
& \mathbb{E}\left\{\left|\frac{1}{m} f(x)-\mathbb{E}\left\{\frac{1}{m} f(x)\right\}\right|^{2}\right\}=\frac{2 \sigma^{4} r}{m^{2}}=\frac{4 \sigma^{4}}{m}
\end{aligned}
$$

$$
\frac{\mathrm{dev}}{\mathrm{avg}}=\frac{1}{\sqrt{m}}
$$

relevant case: $\sigma^{2}=1 / 2$

$$
\operatorname{avg}=1
$$

$$
\operatorname{dev}=\frac{1}{\sqrt{m}}
$$

Product of independent zero-mean Gaussian random variables

x_{1} and x_{2} are normal distributed with zero mean and variance $\sigma_{1}^{2}, \sigma_{2}^{2}$

$$
x=x_{1} x_{2}
$$

x has Bessel K_{0} distribution with variance $\sigma^{2}=\sigma_{1}^{2} \sigma_{2}^{2}$

$$
\begin{aligned}
& f(x)=\frac{1}{\pi \sigma} K_{0}\left(-\frac{|x|}{\sigma}\right) \\
& \mathbb{E}\{f(x)\}=0 \\
& \mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=\sigma^{2}
\end{aligned}
$$

Bessel K_{0} distribution

x_{1} and x_{2} are normal distributed with zero mean and variance $\sigma_{1}^{2}, \sigma_{2}^{2}$

$$
x=x_{1} x_{2}
$$

x has Bessel K_{0} distribution with variance $\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}$

$$
\begin{aligned}
& f(x)=\frac{1}{\pi \sigma} K_{0}\left(-\frac{|x|}{\sigma}\right) \\
& \mathbb{E}\{f(x)\}=0 \\
& \mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=\sigma^{2}
\end{aligned}
$$

Rayleigh distribution

x_{1} and x_{2} are normal distributed with zero mean and equal variance σ^{2}

$$
x=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

x is Rayleigh-distributed

$$
\begin{aligned}
& f(x)=\frac{x}{\sigma^{2}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \quad x \geq 0 \\
& \mathbb{E}\{f(x)\}=\sqrt{\frac{\pi}{2}} \sigma \\
& \mathbb{E}\left\{f^{2}(x)\right\}=2 \sigma^{2} \\
& \mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=\frac{4-\pi}{2} \sigma^{2}
\end{aligned}
$$

Rayleigh distribution with $\sigma^{2}=1 / 2$	
quantity with $\sigma^{2}=1 / 2$	$\begin{gathered} \text { value } \\ {[10 \log (), \mathrm{dB}]} \end{gathered}$
$\text { average }=\sqrt{\frac{\pi}{4}}$	$\begin{gathered} 0.886 \\ {[-0.525]} \end{gathered}$
deviation $=\sqrt{1-\frac{\pi}{4}}$	$\begin{gathered} 0.463 \\ {[-3.34]} \end{gathered}$
$\frac{\mathrm{dev}}{\mathrm{avg}}=\sqrt{\frac{4}{\pi}-1}$	$\begin{gathered} 0.523 \\ {[-2.82]} \end{gathered}$
$\frac{\operatorname{avg}+\mathrm{dev}}{\operatorname{avg}}=1+\sqrt{\frac{4}{\pi}-1}$	$\begin{gathered} 1.523 \\ {[+1.83]} \end{gathered}$
$\frac{\operatorname{avg}-\mathrm{dev}}{\operatorname{avg}}=1-\sqrt{\frac{4}{\pi}-1}$	$\begin{gathered} 0.477 \\ {[-3.21]} \end{gathered}$
$\frac{\operatorname{avg}+\operatorname{dev}}{\operatorname{avg}-\operatorname{dev}}=\frac{1+\sqrt{4 / \pi-1}}{1-\sqrt{4 / \pi-1}}$	$\begin{gathered} 3.19 \\ {[5.04]} \end{gathered}$

One-sided Gaussian distribution

x is normal distributed with zero mean and variance σ^{2}

$$
\mathscr{Y}=|\mathscr{C}|
$$

$$
\begin{aligned}
& f(x)=2 \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) \\
& \mathbb{E}\{f(x)\}=\sqrt{\frac{2}{\pi}} \sigma \\
& \mathbb{E}\left\{f^{2}(x)\right\}=\sigma^{2} \\
& \mathbb{E}\left\{|f(x)-\mathbb{E}\{f(x)\}|^{2}\right\}=\left(1-\frac{2}{\pi}\right) \sigma^{2}
\end{aligned}
$$

one-sided Gaussian distribution with $\sigma^{2}=1 / 2$	
quantity with $\sigma^{2}=1 / 2$	$\begin{gathered} \text { value } \\ {[10 \log (), \mathrm{dB}]} \end{gathered}$
average $=\sqrt{\frac{1}{\pi}}$	$\begin{gathered} 0.564 \\ {[-2.49]} \end{gathered}$
deviation $=\sqrt{\frac{1}{2}-\frac{1}{\pi}}$	$\begin{gathered} 0.426 \\ {[-3.70]} \end{gathered}$
$\frac{\mathrm{dev}}{\operatorname{avg}}=\sqrt{\frac{\pi}{2}-1}$	$\begin{gathered} 0.756 \\ {[-1.22]} \end{gathered}$
$\frac{\mathrm{avg}+\mathrm{dev}}{\operatorname{avg}}=1+\sqrt{\frac{1}{2}-\frac{1}{\pi}}$	$\begin{gathered} 1.756 \\ {[+2.44]} \end{gathered}$
$\frac{\operatorname{avg}-\mathrm{dev}}{\operatorname{avg}}=1-\sqrt{\frac{1}{2}-\frac{1}{\pi}}$	$\begin{gathered} 0.244 \\ {[-6.12]} \end{gathered}$
$\frac{\operatorname{avg}+\operatorname{dev}}{\operatorname{avg}-\operatorname{dev}}=\frac{1+\sqrt{1 / 2-1 / \pi}}{1-\sqrt{1 / 2-1 / \pi}}$	$\begin{gathered} 7.18 \\ {[8.56]} \end{gathered}$

Applications of the Cross Spectrum Measurement

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Summary

- Radio-astronomy (Hanbury-Brown, 1952)
- Early implementations
- Radiometry (Allred, 1962)
- Noise calibration (Spietz, 2003)
- Frequency noise (Vessot 1964)
- Phase noise (Walls 1976)
- Dual delay line system (Lance, 1982)
- Phase noise (Rubiola 2000 \& 2002)
- Effect of amplitude noise (Rubiola, 2007)
- Frequency stability of a resonator (Rubiola)
- Dual-mixer time-domain instrument (Allan 1975, Stein 1983)
- Amplitude noise \& laser RIN (Rubiola 2006)
- Noise of a power detector (Grop \& Rubiola)
- Noise in chemical batteries (Walls 195)
- Semiconductors (Sampietro RSI 1999)
- Electromigration in thin films (Stoll 1989)
- Fundamental definition of temperature
- Hanbury Brown - Twiss effect (Hanbury-Brown \& Twiss 1956, Glattli 2004)

Radio-astronomy

Measurement of the apparent angular size of stellar radio sources

Jodrell Bank, Manchester, UK

$$
\alpha \text { Cigni (Deneb) }
$$

-The radio link breaks the hypothesis of symmetry of the two channels, introducing a phase θ
-The cross spectrum is complex
α Cassiopeiae (Schedar)
-The antenna directivity results from the phase relationships

- The phase of the cross spectrum indicates the direction of the radio

Radiometry \& Johnson thermometry

noise comparator
C. M. Allred, A precision noise spectral
density comparator, J. Res. NBS 66C no. 4 p.323-330, Oct-Dec 1962

Article made publicly available by NIST,
https://nvlpubs.nist.gov/nistpubs/jres/66C/jresv66Cn4p323_A1b.pdf

Conceptual implementation of the Kelvin

Boltzmann constant $k=1.380649 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ exact (≥ 20 May 2019)

$$
\begin{array}{lll}
\text { thermal noise } & S=k T & \text { high accuracy of } I \\
\text { shot noise } & S=2 e I R & \text { with a dc instrument }
\end{array}
$$

Poisson process

Property of the Poisson process

$$
\mu=\sigma^{2}
$$

Noise calibration

$$
\begin{array}{lr}
\text { thermal noise } & S=k T \\
\text { shot noise } & S=2 e I R
\end{array}
$$

> high accuracy of I with a dc instrument

Compare shot and thermal noise with a noise bridge

Fig. 1. Theoretical plot of current spectral density of a tunnel junction (Eq. 3) as a function of dc bias voltage. The diagonal dashed lines indicate the shot noise limit, and the horizontal dashed line indicates the Johnson noise limit The voltage span of the intersection of these limits is $4 k_{\mathrm{B}} T / e$ and is indicated by vertical dashed lines. The bottom inset depicts the occupancies of the states in the electrodes in the equilibrium case, and the top inset depicts the out-of-equilibrium case where $\mathrm{eV} \gg k_{\mathrm{B}} T$.

In a tunnel junction, theory predicts the amount of shot and thermal noise
L. Spietz \& al., Primary electronic thermometry using the shot noise of a tunnel junction, Science 300(20) p. 1929-1932, jun 2003

Early implementations

1940-1950 technology

Spectral analysis at the single frequency f_{0}, in the bandwidth B
Need a filter pair for each Fourier frequency

Frequency noise of a H-maser

R. F. C. Vessot, L. F. Mueller, J. Vanier, Proc. NASA Symp. on Short Term Frequency Stability p.111-118, Greenbelt, MD, 23-24 Nov 1964 Article made publicly available by NASA https://ntrs.nasa.gov/api/citations/19660001092/downloads/19660001092.pdf

Phase noise measurement

(relatively) large correlation bandwidth provides low noise floor in a reasonable time

Phase Noise Measurement

background noise
E.Rubiola, V.Giordano, RSI 73(6), Jun 2002, Fig. 10

by-step attenuator

E. Rubiola, V. Giordano, Rev. Sci. Instrum. 71(8) p.3085-3091, aug 2000
E. Rubiola, V. Giordano, Rev. Sci. Instrum. 73(6) pp.2445-2457, jun 2002

Below the standard thermal floor

E.Rubiola, V.Giordano, Proc. 1999 EFTF-IFCS p.1125-1128, Fig. 3

Phase noise

E. Rubiola and R. Boudot, The effect of AM Noise on Correlation Phase-Noise Measurements, IEEE Transact. UFFC 54(5) p.926-932, May 2007

Effect of amplitude noise

pink: noise rejected by correlation and averaging

Should set both channels at the sweet point of the RF input, if exists, by offsetting the PLL

The effect of the AM noise is strongly reduced by the RF amplification

Dual-delay-line method

(arguably) Original idea by
D. Halford's NBS notebook F10 p.19-38, apr 1975

First published: A. L. Lance \& al, CPEM Digest, 1978

The delay line converts the frequency noise into phase noise

The high loss of the coaxial cable limits the maximum delay

Updated version:
The optical fiber provides long delay with low attenuation ($0.2 \mathrm{~dB} / \mathrm{km}$ or $0.04 \mathrm{~dB} / \mu \mathrm{s}$)

Optical dual-delay-line

Two completely separate systems measure the same oscillator under test

The only common part of the setup is the power splitter.
E. Salik, N. Yu, L. Maleki, E. Rubiola, Proc. IFCS, Montreal, Aug 2004 p.303-306

Volyanskiy \& al., JOSAB 25(12) 2140-2150, Dec.2008. Also arXiv:0807.3494v1 [physics.optics] July 2008

Frequency stability of a resonator

The cryogenic oscillator, 3×10^{-16} stability, enables the brute-force measurement of a single resonator

- Bridge in equilibrium
- The amplifier cannot flicker around ω_{0}, which it does not know
-The fluctuation of the resonator natural frequency is estimated from phase noise
- Q matching prevents the master-oscillator noise from being taken in
- Correlation removes the noise of the instruments and the reference resonators

Amplitude noise \& laser RIN

E. Rubiola, Proc. 2006
IFCS p. $750-758$, Fig. 1

AM noise of RF/microwave sources

Laser RIN

E. Rubiola, Proc. 2006 IFCS p.750-758, Fig. 8

AM noise of photonic RF/microwave sources

E. Rubiola, The measurement of AM noise, Proc. IFCS p.750-758, June 2006. Also arXiv:physics/0512082v1 [physics.ins-det], Dec 2005

- Cannot measure the background removing the DUT
- Correlation enables to validate the instrument

Detector noise

[^0]arXiv:physics/0512082v1 [physics.ins-det], Dec 2005
S. Grop, E. Rubiola, Flicker Noise of Microwave Power Detectors, Proc. IFCS p.40-43, April 2009

Noise in chemical batteries

- Do not waste DAC bits for a constant DC, $\mathrm{V}=\mathrm{V}_{\mathrm{B} 2}-\mathrm{V}_{\mathrm{B} 1}$ has (almost) zero mean
-Two separate amplifiers measure the same quantity V
- Correlation rejects the amplifier nose, and the FFT noise as well

Noise in semiconductors

FIG. 2. Schematics of the building blocks of our correlation spectrum analyzer performing the suppression of the uncorrelated input noises by a digital processing of sampled data.

FIG. 9. Experimental frequency spectrum of the current noise from DUT resistances of $100 \mathrm{k} \Omega$ and $500 \mathrm{M} \Omega$ (continuous line) compared with the limits (dashed line) given by the instrument and set by residual correlated noise components.

Sampietro M, Fasoli L, Ferrari G - Spectrum analyzer with noise reduction by crosscorrelation technique on two channels - RSI 70(5) p.2520-2525, May 1999

Electro-migration in thin films

A. Seeger, H. Stoll, 1/f noise and defects in thin metal films, Proc. ICNF p.162-167, Hong Kong 23-26 aug 1999 RF/microwave version: E. Rubiola, V. Giordano, H. Stoll, IEEE Transact. IM 52(1) pp.182-188, feb 2003

- Random noise: X^{\prime} and $X^{\prime \prime}$ (real and imag part) of a signal are statistically independent
- The detection on two orthogonal axes eliminates the amplifier noise.
This work with a single amplifier!
- The DUT noise is detected

Fig. 1. $1 / f$ noise of an $\mathrm{AlSi}_{0.01} \mathrm{Cu}_{0.002}$ thin film measured at room temperature (a) without and (b) with the phase-sensitive ac correlation technique. The Johnson noise level is indicated by the dashed line.

Electromigration in metals is still a hot topic

Paul S. Ho, Chao-Kun Hu, Martin Gall, Valeriy Sukharev, Siemens, Electromigration in Metals, Cambridge, May 2022 ISBN: 9781107032385

Hanbury Brown - Twiss Effect

Anti-correlation shows up in single-photon regime

Also observed in microwaves
Gabelli...Glattli, PRL 93(5) 056801, Jul 2004

$$
\begin{aligned}
& 20 \mathrm{mK} \text { and } 1.7 \mathrm{GHz} \\
& \mathrm{kT}=2.7 \times 10^{-25} \mathrm{~J} \\
& \mathrm{hv}=1.12 \times 10^{-24} \mathrm{~J} \\
& \mathrm{kT} / \mathrm{hv}=-6.1 \mathrm{~dB}
\end{aligned}
$$

Featured reading (optics)
Hanbury Brown R, Twiss RQ - Correlation Between Photons in Two Coherent Beams of Light - Nature 4497 p.27-29, 7 January 1956

Featured reading (microwave port)
Gabelli J, Reydellet LH, Feve G, Berroir JM, Placais B, Roche P, Glattli DC, HanburyBrown Twiss Correlation to Probe the Population Statistics of GHz Photons Emitted by Conductors, PRL 93(5) 056801, 27 July 2004

femto-st
ntinsclences a

Lecture 5
 Scientific Instruments \& Oscillators

Lectures for PhD Students and Young Scientists

Enrico Rubiola
CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Contents

- Spectrum analyzer
- Lock-in amplifiers and boxcar average
- Frequency-to-digital and time-to-digital converters

Spectrum Analyzers

Excerpt from 03 Power Spectra

FFT spectrum analyzer

- Direct digitization of the input signal
- Fully digital process
- Practical limit $f \leq 0.4 f_{S}$
- Tough tradeoff between resolution and max frequency

Parallel spectrum analyzer

Rice representation
Integration over a finite time

$$
\begin{aligned}
& x(t)=\sum_{n=0}^{\infty} a_{n}(t) \cos \left(n \omega_{0} t\right)-b_{n}(t) \sin \left(n \omega_{0} t\right) \\
& S_{x}\left(n \omega_{0}\right)=\left[a_{n}^{2}+b_{n}^{2}\right] / \omega_{0} \quad \omega_{0} \text { is the analysis bandwidth }
\end{aligned}
$$

Vibrating-reed frequency meter

Mass \& Spring —> resonator

Scanning spectrum analyzer

-RF/microwaves

- The one and only option until the late 1990 s
- Progressively replaced with the hybrid analyzer
- Optics
- Cannot use IF
- Analog VCO - tunable laser

Synthesized spectrum analyzer

- The VCO is replaced with a synthesizer
- Otherwise similar to the scanning SA

Hybrid FFT spectrum analyzer

Lock-in Amplifier

Lock-in Amplifier - main ideas

1. Very small signal

Next year: Explain what is the signal, and in/out. Fourier components

1. Can be detected if you have the reference
2. AC measurement:

- Get out of the DC, drift and flicker region

3. Differential measurement

- Oscillator is common mode
- Fluctuations rejected

4. Transposed filter solves

- Narrow bandwidth
- Shape
- Stability of center frequency and bandwidth

Narrowband $x(t)$ and $\mathrm{y}(t)$

$$
\begin{aligned}
& \left\{[x(t) \cos (\omega t)-y(t) \sin (\omega t)] \times 2 \cos \left(\omega_{t}\right)\right\} * \text { LPF }=x(t) \\
& \left\{[x(t) \cos (\omega t)-y(t) \sin (\omega t)] \times\left[-2 \sin \left(\omega_{t}\right)\right]\right\} * \text { LPF }=y(t)
\end{aligned}
$$

Synchronous detection

Physical property

- Transparence
- Attenuation
- Resonance
- Molecular absorption
- Capacitance
- Resistance
- etc.

Dynamic Reserve

Analog implementation
andwidth
B/2

Digital implementation

problem
problem
$W \gg \mathrm{~B}$
$W \gg \mathrm{~B}$

- Analog implementation
- Multiplier or double-balanced mixer
- Saturation
- Passive filters difficult to design
- Active filters easier to shape, but noisy
- Digital implementation
- Saturation of the ADC
- The low-pass filters integrate the signal in its time constant \rightarrow Numerical overflow

Example - Strain Gauge

Tricks

- Thermal coefficient $d R / R d T$ matches the material under test
- Specific strain gauges for steel, concrete, Aluminum, etc.
- Typical $1 \mathrm{ppm} / \mathrm{K}$ residual coefficient
- Beware of the glue
- Two-sensor symmetry doubles the gain and improves the stability
- Wheatstone bridge is magic
- 4-wires connection minimizes the effect of cable resistance
- Virtues of 600 Hz probe
- multiple of 50 Hz and 60 Hz (EU/USA)
- Notch filter cancels the pollution from power grid

Application - Spectroscopy

Application - Magnetic Field

Boxcar Averager

Boxcar Averager

Small signal in large noise

INTEGRnTOR

- Average on m samples for each $\tau=n \theta, n=0 \ldots N$
- Takes $N+1$ integrators
- The integer ℓ is a technical delay

Analog boxcar

- Early 1950s
- Parallel -> multiple integrators
- Sequential -> one integrator, and slow recorder

Digital boxcar

- Fast electronics
- No need of delay, $\ell=0$
- Needs large dynamic reserve
- Use a fraction of ENoB
- Integrator takes highe no of bits

A Sequential Boxcar in 1960

R. J. Blume, `Boxcar' Integrator with Long Holding Times, Rev Scient Instrum 32(9) p.1016, Sept 1961

High-Resolution Time-To-Digital \& Frequency-To-Digital Converters

CNRS FEMTO-ST Institute, Besancon, France
INRiM, Torino, Italy

Outline
Basic counters (RF \& microwave)
The input trigger
Clock interpolation techniques
Π, Λ and Ω counter, and statistics

1 - Basic TDCs and FDCs

Digital hardware

D-Type Flip-Flop (digital sampler)

And gate

1 \& 1 => 1
$0=>0$

Time interval

The gate control FF is a trick to synchronize the inputs to the clock

The resolution is set by the clock period $1 / v_{c}$

The (old) frequency counter

The resolution is set by the input period $1 / v_{x}$, which can be poor

C|assicalrecinpocal counter

- Use the highest clock frequency permitted by the hardware
- The measurement time is a multiple of the input period

Prescaler

- The prescaler is a n-bit binary divider $\div 2^{n}$ (decimal scalers are gone)
- GaAs dividers work up to at least 20 GHz
- Reciprocal counter $=>$ there is no resolution reduction
- Most microwave counters use the prescaler

Transfer oscillator

- The transfer oscillator is a PLL
- Harmonics generation takes place inside the mixer
- Harmonics locking condition: $N v_{v c o}=v_{x}$
- Frequency modulation Δf is used to identify N
- Rather complex scheme,

$$
\times N=>\Delta v N \Delta v
$$

Heterodyne counter

- Down-conversion: $f_{b}=\left|v_{x}-N v_{c}\right|$
- v_{b} is in the range of a classical counter (100-200 MHz max)
- no resolution reduction in the case of a classical frequency counter (no need of reciprocal counter)
- Old scheme, nowadays used only in some special cases (laser frequency metrology)

2 - Trigger

Trigger hysteresis

Threshold fluctuation

Threshold fluctuation

Don't blame the trigger

Input noise $\sqrt{4 k T B}$ of frequency counters				Account for 20 dB loss and noise factor 126 (1 dB) Equivalent noise figure $F=126$ (21 dB)	
Type	max freq	Noise BW	e_{n}		
HP 5370	225 MHz	900 MHz	$27 \mu \mathrm{~V}$		
SR 620	1.3 GHz	5.2 GHz	$66 \mu \mathrm{~V}$	Total RM	noise
thumb rule: (noise BW$)=4(\max$ input f$)$				HP 5370	$306 \mu \mathrm{~V}$
				SR 620	$736 \mu \mathrm{~V}$

Trigger noise - oversimplified

- The effect of noise is often explained with a plot like this
- Yet, the formula holds in the absence of spikes!!!
- To the general practitioner, this explanation looks simple

Trigger behavior vs bandwidth

Noise rms slope

$$
\begin{aligned}
& \mathrm{SR}_{n}^{2}=4 \pi^{2} \int_{0}^{B} f^{2} S_{V}(f) d f \\
& \mathrm{SR}_{n}^{2}=\frac{4 \pi^{2}}{3} \sigma_{V}^{2} B^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Critical slope } \\
& \mathrm{SR}_{s}^{2}=\frac{4 \pi^{2}}{3} S_{V} B^{3} \\
& \mathrm{SR}_{s}^{2}=\frac{4 \pi^{2}}{3} \sigma_{V}^{2} B^{2}
\end{aligned}
$$

Signal slope equals rms noise slope

- When the noise slope exceeds the clean-signal slope, the total slope changes sign
- There result spikes, and systematic lead error

3 - Interpolation Schemes

Clock interpolation

Too short T_{a} and T_{b} are difficult to measure, so we add one T_{c} to each
Interpolation is made possible by the fact that the clock frequency is constant and accurately known

The key elements

Synchronized oscillator
gate pulse

Coincidence detector

Example: Hewlett Packard 5370A

Clock $f_{c}=200 \mathrm{MHz} \Rightarrow \delta T_{x}=5 \mathrm{~ns} \quad$ (ECL technology)
Vernier $n=256 \quad \delta T_{a}=\delta T_{b}=\frac{1}{256} \delta T_{x}=19.5 \mathrm{ps}$
It takes max 257 cycles of f_{c} for the two clocks to coincide
Conversion time $T=n T_{c}=1.283 \mu \mathrm{~s}$
Resolution
free space, $\delta \ell=c \delta T_{a}=6 \mathrm{~mm}$
cable, $v=0.67 \mathrm{c}, \delta \ell=4 \mathrm{~mm}$

The Nutt's dual-slope interpolator

$$
T_{a}^{\prime}=N_{a}^{\prime} T_{c}^{\prime} \quad\left(+0 /-T_{c}^{\prime}\right)
$$

Similar to the dual-slope voltmeter
R. Nutt, Digital time intervalometer, RSI 39(9) p.1342-1345, sep 1968

Example
Nanofast 536 B (early 1970s!)
Smithsonian Astrophysical Lab
$f_{c}=20 \mathrm{MHz} \rightarrow T_{c}=50 \mathrm{~ns}$
$\left(I_{1}+I_{2}\right) / I_{2}=4096$
$T_{c} /\left[\left(I_{1}+I_{2}\right) / I_{2}\right]=12 \mathrm{~ns}$

Example: Nanofast 536 B
Smithsonian Astrophysical Laboratory
Main elock $f_{c}=10 \mathrm{MHz}_{3} \rightarrow \delta T=\dot{r}_{c}=100 \mathrm{~ms}$
Time Intaval amplifier $\frac{I_{1}}{I_{2}}=4000$

$$
T_{a}^{\prime} \in(200 \mu s, 400 \mu s)
$$

aux. Clock 20 MHz for the messurement of r_{a}^{\prime}

$$
\begin{aligned}
& \delta T_{a}^{\prime}=T_{c}^{\prime}=50 \mu \mathrm{~s} \quad(1 / 20 \mathrm{mHz}) \\
& \delta T_{a}=\frac{I_{2}}{I_{1}} T_{c}^{\prime} \quad \delta T_{e}=\frac{1}{4000} \times 50 \mathrm{~ms}=12.5 \mathrm{ps}
\end{aligned}
$$

The Neuoflast 536B conuter is (was?) a part of the Markiv system I\& Veny lony Baselime Indiafarimetry, (VLBI) Early TTL Yechuology,
Mote: a pulse propajates in acoble at $c^{\prime} \approx \frac{2}{3} c$ $\delta \mathrm{b}$ is equivalud to a leupth of 2.5 mm

The ramp interpolator

Example (Stanford SR620)
$f_{c}=90 \mathrm{MHz}\left(\mathrm{T}_{\mathrm{c}}=11.1 \mathrm{~ns}\right)$
11 bits
$\mathrm{T}_{\mathrm{c}} / 2^{11}=5.4 \mathrm{ps}$

This costs 1 bit ADC resolution loss

Example: Stanford SR 620

$$
\begin{array}{ll}
f_{c}=90 \mathrm{MH} & \text { phose-locked to the } 10 \mathrm{MHz} \\
T_{c}=111 \mathrm{~ms} & \begin{array}{l}
\text { sefereuee. } \\
\text { Ect Tecknolngy }
\end{array}
\end{array}
$$

12 bit convecter, Ibut lost becoinse of the
11 bets $\delta r_{a}=\frac{111 \mathrm{mss}}{2^{11}}=5.4$ ps

Thermometer-code interpolator

FPGA implementation

- Needs full layout control
- The pipeline may not fit in a cell

Great for ASIC implementation

Vernier (enhanced resolution) version

- Delay is on both lines is inevitable
- Just exploit it
$\theta_{\text {eq }}=\theta_{c k}-\theta_{\text {in }}$

Review article:
J. Kalisz, Metrologia 41 (2004) 17-32

Vernier thermometer-code interpolator

$$
\theta_{\mathrm{eq}}=\theta_{2}-\theta_{1}
$$

Owing to physical size, both θ_{1} and θ_{2} are always present

Ring oscillator

Also used in PLL circuits for clock-frequency multiplication

SAW delay-line interpolator

A - Block diagram

B - Pulse waveforms

- Dispersion stretches the input pulse
- Sub-sampling and identification of the alias
P. Panek, I. Prochazka, Rev. Sci. Instrum. 78(9) 094701, 2007

Sigma Time STX301

- Rumors are that this is none of the methods shown
- No information at all, I'm unable to reverse-engineer

comenercialinstruments

Carmel	NK732	3 ps	PCI/PXI time stamp	Ramp
Guide Tech	GT667/668	1 ps	PCI/PXI time stamp	Ramp
Keysight	53230A	20 ps	Lab instrument	Frequency vernier
Lange Electronic	KL-3360	50 ps	П / Λ, special purpose	Ramp
Lumat			PCI card	Thermometer code
Stanford	SR620	25 ps	Lab instrument	Ramp
Serenum	TDC	6 ps rms	PCB module	FPGA Thermometer code
AMS Group	TDC GPX	22 ps	Chip	
MAXIM	MAX35101	8 ps	Chip	
SPAD Lab	TDC Module		Packaged module	
Texas	THS788	8 ps	Chip	Thermometer code

Lecture

[^0]: E. Rubiola, The measurement of AM noise, Proc. IFCS p.750-758, June 2006. Also

