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The Companion of Enrico’s Chart for Phase Noise
and Two-Sample Variances
Enrico Rubiola , Member, IEEE, and François Vernotte

Abstract— Phase noise and frequency (in)stability both
describe the fluctuation of stable periodic signals from somewhat
different standpoints. Frequency is unique compared to other
domains of metrology, in which its fluctuations of interest span
at least 14 orders of magnitude, from 10−4 in a mechanical
watch to 10−18 in atomic clocks. The frequency span of interest
is some 12–15 orders of magnitude from μHz to GHz Fourier
frequency for phase noise, while the time span over which the
fluctuations occur ranges from sub-μs to years integration time
for variances. Because this domain is ubiquitous in science and
technology, a common language and tools suitable to the variety
mentioned are a challenge. This article is at once: 1) a tutorial;
2) a review covering the most important facts about phase noise,
frequency noise, and two-sample (Allan and Allan-like) variances;
and 3) a user guide to “Enrico’s Chart of Phase Noise and
Two-Sample Variances.” In turn, the Chart is a reference card
collecting the most useful concepts, formulas, and plots in a
single A4/A-size sheet, intended to be a staple on the desk of
whoever works with these topics. The Chart is available under
Creative Commons 4.0 CC-BY-NC-ND license from Zenodo,
DOI: 10.5281/zenodo.4399218. A wealth of auxiliary material is
available for free on Enrico’s home page: http://rubiola.org.

Index Terms— Frequency control and conversion, instrumen-
tation and measurement, low phase noise oscillators, oscillators,
phase noise.

I. INTRODUCTION

PHASE noise and frequency instability are equivalent
concepts, to the extent that frequency is the derivative of

the instantaneous phase. However, the choice of terminology,
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mathematical tools, and experimental methods really depends
on what aspect of the noise our system is sensitive to or which
aspect we focus on. The PSD of the phase fluctuations of a
periodic signal, as a function of the Fourier frequency, is the
preferred tool to describe phase noise. Similarly, the frequency
instability is described by the PSD of frequency fluctuations,
or more often by the two-sample (Allan or Allan-like) variance
of the fractional frequency, as a function of the measurement
time.

A. Taste of Phase Noise and Frequency Stability

There are many reasons to be interested in phase noise and
frequency instability, most of which are related to spectrum
broadening, timing uncertainty, and reduced coherence time.
The impact of phase noise and frequency instability is surpris-
ingly ubiquitous, from everyday technology to fundamental
science. Let us go through some examples.

In radio systems, sensitivity or dynamic range may be
limited by phase noise sidebands appearing: 1) on the LO
of a superheterodyne receiver, causing neighboring strong
signals to mask the desired IF signal (reciprocal mixing) [1],
[2, Sec. 2.5]; 2) on strong adjacent transmitted signals them-
selves in channelized systems (the near-far problem, in which
sideband noise from local users can overpower distant cellular
base stations); or 3) on strong reflected radar signals, such as
ground clutter, limiting the ranging accuracy and the detection
of small objects in the clutter [3, Chapter 6], [4], [5]. In these
systems, amplitude fluctuation (AM) is limited in oscillators
and nonlinear power amplifiers, so phase noise (PM) is gener-
ally the dominant source of noise sidebands. Similar problems
are found in LiDAR, RADAR’s optical counterpart. Phase- and
frequency-modulated systems are, of course, directly subject
to noise in the frequency domain; examples include analog
frequency-division FM multiplex systems and digital QAM
modulation systems.

Fig. 1. QR codes to download Enrico’s Chart and this article.
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Fig. 2. Enrico’s Chart of phase noise and two-sample variances, front side.

In digital systems and communications, and in microelec-
tronics as well, the term “jitter” is often used for phase
noise integrated over the appropriate bandwidth and converted
into time fluctuations. In turn, time fluctuations increase the
BER (see [6] and [7]). In such systems, the “quality” of
the digital clock is often shown as the eye pattern (eye
diagram), which is corrupted by the jitter (see [6, Sec 1.2] and
[7, Sec. 4.1] and “Eye pattern” entry on Wikipedia). Accurate
clock synchronization is a major leap forward in 5G/6G
wireless systems [8], [9].

The community of power grids is looking at frequency
stability for future power grids [10], [11], [12] because sus-
tainability requires a spread of generator technologies with dif-
ferent inertia (latency between demand for increased/reduced
power and actual power delivery). We believe that, at some
point, the “generators’ inertia” will be identified with the
integration time τ of the AVARs. Insufficient synchronization
is blamed as a cofactor of the 2003 Northeast Blackout in the
USA [13].

Unique requirements arose with the development of the deep
space network. The DSN required a blend of long-term sta-
bility for the initial acquisition of weak signals and short-term
stability for maintaining the lock. This new combined need led
to the 1964 IEEE-NASA Symposium on Short-term Frequency

Stability [14], to a Special Issue of Frequency Stability pub-
lished in 1966 in the PROCEEDINGS OF THE IEEE [15], and
to the definitive 1971 Barnes et al.’s article [16]. The latter is
a precursor of the IEEE Standard 1139 [17]. That effort to
update this standard continues today.

The AVAR tools also find applications in geodesy and
astrometry [18]. The short-term fluctuations of oscillators used
in very-large baseline interferometry (VLBI) cannot be com-
pensated for numerically and limit the detection sensitivity.
Time fluctuations are critical in gravitational wave experiments
(LIGO) because of the tiny space–time warp to be detected
and in the RF cavities of particle accelerators [19, Chapters
by F. Tecker and H. Damereau], where they cause intensity
loss or energy loss in the beam.

In quantum computing, the correlation time limits the life-
time of a qubit [20].

Optics supports a major trend in high-purity signals [21]
and in atomic oscillators and clocks as well [22] because the
time interval associated with a phase angle is ∼10−4 smaller
than at microwave frequencies. The FS laser, which enabled
the first direct synthesis from RF to optics, played a major
role in this trend. The Nobel Prize in Physics was awarded
to John L. Hall and Theodor W. Hänsch in 2005 for the FS
laser (together with Roy J. Glauber) (see [23], [24], and [25]).
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Fig. 3. Enrico’s Chart of phase noise and two-sample variances, back side.

Phase noise challenges the networks intended for fundamental
science and clock comparison between metrological labs using
optical fibers shared Internet data traffic [26], [27], [28], [29].

In the new version of the International System of Units SI
[30], virtually all measurement units rely on time. Thus, time
fluctuations, and equivalently frequency fluctuations, impact
all branches of metrology. For example, the ampere, the unit
of electric current, relies on counting the electrons flowing in
the unit of time. The Josephson voltage standard is based on
the conversion from photon energy to voltage. The Nobel Prize
in Physics was awarded to Brian D. Josephson in 1973 for the
theoretical prediction of this effect.

We now discuss Enrico’s Chart, the subject of this article,
which brings the efforts to define and standardize phase noise
and time-domain frequency instabilities to a concise two-page
working summary.

B. Enrico’s Chart

Enrico’s Chart of phase noise and two-sample variances is a
reference card collecting the most useful definitions, formulas,
and plots in the domain of phase noise and frequency stability.
Starting from the first draft in 2011, it has been improved
from a loose single page on the back of the program of

the European Frequency and Time Seminar1 to quite a dense
front/back format. At least 1000 plasticized prints have been
distributed as learning material at the EFTS and at invited
conferences, courses, and seminars. The current form results
from the scientific contribution of the two authors and from
feedback and amendments by the users. The name on the
Chart is mainly historical, but it reflects Enrico’s tenacity
in maintaining, updating, improving the graphic design, and
distributing the Chart.

C. License and Distribution

Enrico’s Chart is a digital object (PDF file) available from
Zenodo as DOI: 10.5281/zenodo.4399218 and released under
Creative Commons 4.0 CC-BY-NC-ND license. This DOI is
called concept DOI because it always resolves to the latest
version. Albeit Zenodo delivers a separate DOI for each
version, version DOIs should only be used in special cases.
The QR codes of Fig. 1 point to the Chart and this article.
Redistribution is encouraged as the Internet link or as the QR
code, not as a file.

The “NC” and “ND” copyright attributions deserve a com-
ment. The “NC” restriction is mainly intended to prevent

1The EFTS http://efts.eu is a full-week crash course with lectures and lab
sessions funded in 2013 and held in Besançon every summer since.
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selling the Chart for profit. In contrast, if companies distribute
the Chart for free with their products, that is not considered
commercial use, we encourage this practice. The equipment
employed for measurements in time and frequency is a notable
example. The “ND” restriction preserves the academic inde-
pendence of the Chart, preventing companies from modifying
it, or from building advertisements upon it.

For any other use, Enrico himself is the preferred
contact.

D. About this Article

This article is intended: 1) to accompany the Chart; 2) as a
short tutorial; 3) as learning material for lectures; and, besides,
4) it can be cited as a summary of modern notation, provided
that the reader agrees with our choices.

The reader having an already good understanding of time
and frequency may go straight to Enrico’s Chart and put this
article aside for later reading or refer to students and younger
colleagues. Less experienced people may appreciate this article
as a tutorial or as a review. To them, if they have been around
for long enough, phase noise and frequency stability may relate
to a well-identified problem.

A reduced copy of the Chart is included (see Figs. 2 and 3);
the indication “Region 1.n” in the text means that we refer to
the region n defined by the watermarks on page 1 (see Fig. 2)
of the Chart, while “Region 2.n” refers to the region n on
page 2 (see Fig. 2). In any event, it is a good idea to have on
hand a separate copy of the Chart.

E. Suggested Introductory Readings

We advise starting from the latest version of the IEEE
Standard 1139 [17]. The appendices of this standard cover
topics similar to ours, but presentation and standpoint are sur-
prisingly different. This article is our personal view, whereas
the IEEE Standard is the outcome of a rather large committee.
The recommendations of the International Telecommunication
Union (ITU) [31], [32] are must too. The European Telecom-
munications Standards Institute (ETSI) provides a series
of standards related to clock synchronization in networks
[33, Parts 1–7].

Reference [16] is one of the very first articles that all readers
should study. It defines the language and the notation still in
use, it introduces the spectra, the variances, and their relations,
and it explains the early experimental methods. The quantities
ϕ, x, Δν, and y were first defined there. People interested in
the birth of the scientific ideas that originated most concepts of
phase noise and frequency stability should review [14]. This is
the Proceedings book of a one-time IEEE-NASA conference
that took impetus from the DSN. Reference [34] is a review
article about the progress on the concepts of phase noise and
frequency stability after the early ideas (see [35]).

Turning our attention to books and booklets, the Riley hand-
book [36] is freely available, sponsored by NIST. Emphasis is
on Allan and Allan-like variances, rather than noise spectra,
making extensive use of the Stable32 software package.2

2This and other software packages are discussed in Section XI.

Fig. 4. Clock signal (1), observed with an oscilloscope triggered by an
external noise-free reference. The shadowed (pink) arrows indicate where
the signal is stationary, unaffected by noise. The elliptical shadowed (cyan)
regions emphasize where noise shows up most.

Reference [37] is a rather extensive practical guide about phase
noise, albeit elderly. Reference [38] is a collection of classical
articles about phase noise and frequency stability, a few of
which are cited elsewhere in this article. The same author also
published a monograph [39]. Reference [40] is another edited
book collecting classical articles from NIST. Reference [41,
Chapter 2 (136 pages)] is a recent text entirely about phase
noise and frequency stability.

Additional material and large slideshows are available on
Enrico’s home page: http://rubiola.org. Upon request, the orig-
inal PPTX files may be released to qualified users. We turn
now to the Chart and Fig. 2.

II. PHASE NOISE AND AMPLITUDE NOISE

A. Clock Signal (Region 1.1)

A pure sinusoidal signal affected by AM and PM noises
(see Fig. 4) can be written as

v(t) = V0

[
1 + α(t)

]
cos

[
2πν0t+ ϕ(t)

]
(1)

where V0 is the amplitude, ν0 is the frequency, α(t) is the
random fractional amplitude, and ϕ(t) is the random phase.
This representation is general, not limited to electrical signals
as the symbol v(t) suggests. In the IEEE Standard 1139, the
amplitude is written as V0+�(t), and the fractional amplitude is
defined as α(t) = �(t)/V0, which is equivalent to our notation.
However, (1) is a simplification of (24).

The bandwidth B of ϕ(t) and α(t) deserves some attention.
Because modulation needs sidebands with appropriate sym-
metry around ν0, the theoretical maximum B is equal to ν0.
That said, in numerous cases of interest, the quantity B/ν0 is
rather small, likely of 10−4, . . . , 10−2, and not necessarily
the same for ϕ(t) and α(t). The autocorrelation function of
noise spans over a time of the order of 1/B or equivalently
ν0/B oscillations. Thus, cycle-to-cycle noise is too small to
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be visible. This is why we use the external trigger in Fig. 4.
Otherwise, triggering on the signal itself would require a dual
time base with an ideally stable delay > 1/B.

Naively, one may believe that α(t) ≈ 0 and ϕ(t) ≈ 0 hold
in general, where the “overline” means average or to take
these conditions as necessary. In systems of practical interest,
we observe quite small amplitude and frequency fluctuations,
and thus, we can assume that |α|� 1. We have measured
|α| of the order of 10−7, . . . , 10−4 in quartz oscillators and
synthesizers [42]. The hypothesis that |ϕ(t)| � 1 rad makes
sense only for two-port systems, where ϕ(t)/2πν0 is the fluc-
tuation of the input-to-output delay. Conversely, the phase of
oscillators always contains divergent processes, so we switch
our attention to |ϕ̇|/2πν0. Practical values span from 10−4 for
cheap watches to 10−16 (accuracy) and 10−18 (fluctuations)
for the frequency-standard prototypes found in metrology labs.

B. Phase Noise Spectrum (Region 1.4)

The variance3 (generalized power) of a quantity q, denoted
by σ2, is the mean square of q. Formally, σ2 = E{|q − μ|2},
where E{ } is the mathematical expectation and μ = E{q}
is the average. The PSD, denoted with S(f), tells us how
σ2 is distributed in frequency. The variable f is called “Fourier
frequency” to differentiate it from the carrier frequency (con-
stant). The single-sided PSD (f > 0) is generally preferred to
the two-sided PSD with no need of saying so. Referring to the
quantity q, the subscript q is optionally added, as in σ2

q and
Sq(f).

For our purposes, Sϕ(f) is the quantity that should be used
to describe the phase noise. In practical measurements, Sϕ(f)
is best evaluated as

Ŝϕ(f) =
2
T

〈
ΦT (f)Φ∗

T (f)
〉
m

[rad2/Hz] (2)

where the hat accent means “estimator” of Sϕ (the reader may
ignore it at first reading), ΦT (f) is the FFT of ϕ(t) sampled
and truncated on an appropriate duration T , the superscript
“∗” means the complex conjugate, the � �m operator is the
average on m acquisitions, and the factor of 2 is needed for
energy conservation after deleting the negative frequencies.4

Equation (2) is used in the Welch algorithm for the estimation
of power spectra [43]. The optional data overlapping used in
the Welch algorithm and the optional window function are
not explicit in (2). The most popular window functions are
known under the names Bartlett, Blackman-Harris, flat-top,
Hamming, Hann, Parzen, and, of course, Welch. The quantity
S(f) = . . . defined by (2), with optional windowing but with
no hat and no averaging (m = 1), is called a periodogram.

3The two-sample variance that we find later is a specialized instance of this
general concept.

4Because ϕ(t) is a real function, its Fourier transform Φ(f) is Hermitian
function, that is, Φ(f) = Φ∗(−f). Accordingly, �{Φ(f)} is the even
function of f , and �{Φ(f)} is the odd function of f . Thus, all the information
is contained in the f > 0 half-plane, and the f < 0 half-plane is redundant
and can be deleted. In the case of the FFT, such redundant region is generally
mapped to fs/2 > f > fs, where fs is the sampling frequency.

C. Deeper Thoughts About the PSD

In statistics, the PSD S(f) is formally defined as the
Fourier transform of the autocovariance of a random process.
In turn, the random process is a set of sample functions or
distributions, called realizations, each of which is indexed
by one outcome of a random experiment. Time statistics
and ensemble statistics are different concepts, and they are
interchangeable only in the case of ergodic processes.

In contrast, some authors take (2) as the definition of
Sϕ(f), with no “hat.” The problem with this choice is that it
avoids some key concepts of statistics, making the uncertainty
difficult to understand.

Using the mathematical concept of process requires one to
define the random experiment. Since mathematics does not
provide general rules for this, we need to make a choice.
For example, we may identify the random experiment with
a large abstract class or more pragmatically with the action
of picking one oscillator from preproduction samples, from a
batch, or from a larger part of a production. In turn, a real-
ization may be identified with the waveform ϕ(t) obtained
by comparing such oscillator with a noise-free reference. This
opens deeper questions, like the meaning and the scientific
legitimacy of “typical” spectra (also stability, aging, drift, and
other parameters) found in data sheets.

As a matter of fact, the right-hand side of (2) can always
be calculated from experimental data. The question arises,
whether or not the estimator converges to the PSD

Ŝϕ(f)→ Sϕ(f) for large m. (3)

This is true for stationary processes (the statistical properties
are independent of the origin of time). That said, relevant
processes often found in oscillators, such as flicker and ran-
dom walk of frequency, are not stationary in a strict sense.
Fortunately, evaluating (2) such processes can be treated as
stationary.

Finally, we notice some analogies between stationarity and
repeatability, and also between ergodicity and reproducibility,
with the caveat that stationarity and ergodicity are mathe-
matical concepts, while repeatability and reproducibility are
defined by the International Vocabulary of Metrology VIM
[44, Entries 2.21 and 2.25] and have quite a technical meaning
related to experimental outcomes.

D. Quantity L (f) and the Related Measurement Units

Most often in the technical literature and data sheets, the
term phase noise refers to the quantity L (f), defined since
the IEEE Standard 1139-1988 [45] as

definition: L (f) =
1
2
Sϕ(f). (4)

Plots and numerical values are always given as

10 log10 L (f) [dBc/Hz]. (5)

After over 30 years in the field, we believe that L (f) is
misleading, and if the community started from scratch, Sϕ(f)
would be used instead. The roots are found in a one-time
symposium coorganized by IEEE and NASA in 1964 [14].
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Because ϕ(t) is an angle, the dimension of Sϕ(f) is a
square angle multiplied by time. Accordingly, the appropriate
unit is rad for ϕ(t) and rad2s for Sϕ(f), but the equivalent
unit rad2/Hz is generally preferred. In logarithmic units,
we use

10 log10 Sϕ(f) [dBrad2/Hz]. (6)

It follows from (4) that L (f) has the same dimension
as Sϕ(f) but different units, such as a mass in kg or
in lb. Accordingly, the unit associated with L (f) should
be A2/Hz where A in a never-used unit of angle that equals√

2 rad 
 81◦. It is worth mentioning that there is no reason to
change the symbol after switching unit, such as in M = 1.5 kg
and M = 3.3 lb. Thus, why should we change the symbol
from Sϕ to L because of the unit of angle?

The unit dBc/Hz is even more confusing. It is obvious that
“c” cannot be read “referred to the carrier,” as most people
have in mind. Instead, taking (4) and (5) literally, “c” is a
square unit of angle, A2 = 2 rad2. Notwithstanding this,
“c” and “c/Hz” alone, with no “dB,” are never seen in the
literature and no unit of angle associated with L (f) either.

We advocate abandoning L (f) in favor of Sϕ(f) because
Sϕ(f) is consistent with the International System of Units SI
[30]—with the minor caveat that a decibel is a non-SI unit
accepted for use with the SI units; in contrast, L (f) is not
consistent. In order to prevent discontinuity in notation and
units, L (f) may still be kept as an auxiliary scale.

E. Former Definition of L (f) and the Deprecated Terms
“SSB Noise” and “Offset Frequency”

In the early time, L (f) was defined as

L (f) =
noise power in 1 Hz bandwidth

carrier power
(wrong!) (7)

and always given as 10 log10 L (f) in dBc/Hz. The historical
meaning of the symbol “c” is “referred to the carrier.” For
example, −120 dBc/Hz means that “the noise sideband in
1-Hz bandwidth is 120 dB below the carrier power.” Sadly,
more than 30 years after the first version of the IEEE Standard
1139 [45], the old definition is still in the mind of numerous
engineers and physicists.

The major problem is that PM and AM as well need
sidebands with the appropriate symmetry with respect to
the carrier. The relationships between LSB and USB define
the type of modulation, AM, PM, or any combination of
these. Thus, the noise power in one sideband does not say
what fraction goes to phase noise and to amplitude noise.
Consequently, the terms “SSB noise” and “offset frequency”
are unsuitable to describe the phase noise and should be
avoided. The variable f in Sϕ(f) should be referred to as
the “modulation frequency” or as the “Fourier frequency” in
formal mathematical language.

We point out that the use of (7) for phase noise is given as
follows:

1) conceptually incorrect, because it does not divide PM
noise from AM noise;

2) experimentally incorrect, because L (f) is always mea-
sured with a phase detector using L (f) = (1/2)Sϕ(f),
instead of the noise-to-carrier ratio;

3) deprecated, as a result of a major effort to adhere to the
SI as the global system of units;

4) unsuitable to describe phase noise exceeding a small
fraction of a radian.

Large phase swings are common at low Fourier frequencies
(long measurement time) and in optics, where the carrier
frequency is high. When

∫
Sϕ(f) df integrated over the full

spectrum approaches or exceeds 1 rad2/Hz, (7) breaks down
because the noise sidebands in angular modulations come at
the expense of the carrier power. Conversely, there is no reason
to question the validity of (2) and (4), even in the case of a
huge number of cycles. In the presence of large angles, the
correct measurement of Sϕ(f) is only a matter of hardware
design.

Finally, the power ratio as defined in the right-hand side
of (7) is definitely not evil—provided that we do not call it
“phase noise,” and we do not use the same symbol L (f)
defined by (4). In some domains, the noise per unit of
bandwidth matters, regardless of the physical origin. This
is the case of the reciprocal mixing in the superheterodyne
receiver [46, Sec. 8.7.2], where a strong emission in neighbor
channels leaks into the IF because of the local-oscillator noise
sidebands. Similarly, Doppler radar visibility of subclutter
targets is typically determined by noise in the oscillator’s
sideband power density. See [1], [3], [4], [5], and [47] as
general references on radars. As noted previously, due to
amplitude limiting, sideband noise in the cited examples is
generally dominated by phase noise, leading to the persistence
of spectrum sideband usage in these applications.

F. Suggested Readings

Digging into the old literature, the earliest use of the
phase noise PSD is arguably Victor 1956 [48]. In the NASA
Symposium [14], both Sϕ(f) and the sideband-to-carrier ratio
were used, the latter mainly for radar and receivers. However,
the symbol L (f) had still to come. Its early occurrences in
archival documents are Blair [49] and Shoaf [50, pp. 167,
179, and 180] both in 1974. Interestingly, the experimental
techniques described in [14] rely on phase detectors, which
points to Sϕ(f). Reference [51] is the one and only remark-
able counterexample that we found, where the sideband-
to-carrier ratio is measured with practically useful dynamic
range. Note that the history of phase noise is beyond our
scope and our skills; we recommend Leeson’s review article
[52, Secs. III–V] and a blog page on Engineering and Tech-
nology History Wiki5 submitted by Leeson, which refers to
additional material of historical interest.

Most of the references about phase noise relate to experi-
mental methods; thus, they are moved to Section X. The early
ideas found in [14] were better formalized in [16] (see [34]).

There is a Special Issue of the PROCEEDINGS OF THE IEEE
[15], three useful books, [53], [6], and [7], and a free booklet

5D. B. Leeson, First-Hand: Phase Noise, https://ethw.org/First-Hand:Phase_
Noise
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from the NPL [37]. There is very little about AM noise. The
reader should refer to [54].

III. USEFUL QUANTITIES (REGION 1.10–1.11)

A. Phase Time Fluctuation (or Phase Time) x(t)

The phase time is the phase fluctuation converted into time

definition: x(t) =
ϕ(t)
2πν0

[s]. (8)

Its spectrum Sx(f) follows from the definition of x(t)
using the property of the Fourier transform that the deriva-
tive operator d/dt maps into multiplication by j2πf , where
j2 = −1, thus, into multiplication by 4π2f2 in the PSD
because of (2). Accordingly,

Sx(f) =
1

4π2ν2
0

Sϕ(f) [s2/Hz ≡ s3]. (9)

B. Frequency Fluctuation (Δν)(t)

The instantaneous frequency fluctuation is

definition: (Δν)(t) =
1
2π

dϕ(t)
dt

[Hz]. (10)

Enclosing Δν in parentheses emphasizes the fact that (Δν)
is an unbreakable quantity. The PSD is found using the
property that d/dt→ ×4π2f2; thus,

Sν(f) = f2Sϕ(f) [Hz2/Hz ≡ Hz]. (11)

Albeit the notation SΔν is more common than Sν , the latter
should be preferred because the PSD is already insensitive
to the constant ν0, by definition; thus, it shows only the
fluctuation ν − ν0.

C. Fractional Frequency Fluctuation y(t)

The fractional frequency fluctuation is

definition: y(t) =
(Δν)(t)
ν0

[dimensionless]. (12)

It follows from (8) to (12) that

y(t) =
dx(t)
dt

=
1

2πν0
dϕ(t)
dt

. (13)

Again, the PSD is found using d/dt→ ×4π2f2; thus,

Sy(f) =
f2

ν2
0

Sϕ(f) [Hz−1 ≡ s]. (14)

D. Polynomial Law or Power Law (Region 1.12–1.15)

The polynomial fit, known as the power law or polynomial
law, is widely used to model phase noise and related quantities.
It is often written as

Sϕ(f) =
0∑

n=−4

bnf
n (15)

Sx(f) =
0∑

n=−4

knf
n (16)

TABLE I

POLYNOMIAL LAW AND BASIC TYPES OF NOISE

where the values of n correspond to the noise types listed in
Table I. These noise types are found in oscillators, with addi-
tional negative-exponent terms sometimes needed, n < −4.
Limitations apply to two-port devices because the input-
to-output delay is not allowed to diverge (cf. Sections IV
and V).

Transposing (15) and (16) to frequency noise, the polyno-
mial law is written as

Sν(f) =
2∑

n=−2

dnf
n (17)

Sy(f) =
2∑

n=−2

hnf
n. (18)

Notice that, for a given process the exponents of f differ
by 2 from (15) and (16) to (17) and (18), in agreement with
the bounds of the sum.

In proper mathematical terms, (15)–(18) are Laurent poly-
nomials, which is the extension of the regular polynomials to
negative powers of the variable.

E. Quantities ϕ, x, Δν, and y in Frequency Synthesis

The ideal, noise-free synthesizer is the electrical ana-
log of a play-free gearbox. It delivers an output frequency
νo = (N/D)νr, where N/D is the rational number, which
defines the synthesis ratio, and νr is the reference frequency.
Thus, the synthesizer transfers the quantities x(t) and y(t) from
the reference input to the output, unchanged. For example,
shifting the reference by +1.2 ppm, the output frequency will
be +1.2 ppm off the nominal value, thus 150 Hz higher if
the output is set to 125 MHz. Similarly, introducing a 100-ps
delay with a line stretcher at the input results in the output
shifted by 100 ps. This value is the same at 5- and 125-MHz
output frequencies.
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Fig. 5. Basic phase noise behavior of components and systems: (a) phase-
type and (b) time-type. We show how the carrier frequency affects or does not
affect Sϕ(f) and Sx(f). The effect of aliasing, not shown here, may change
the white-noise scaling from (ν2/ν1)2 into ν2/ν1. In contrast, flicker and
other colored noise types are immune from aliasing.

By contrast, the synthesis is ruled by ϕ = (N/D)ψ when
we express the phase shift as an angle, ψ at the input, and ϕ
at the output. For example, a +1-mrad shift of the 10-MHz
reference results in a +12.5-mrad shift if the output is set
to 125 MHz. Accordingly, the phase noise spectrum is ruled
by

Sϕ(f) =
(
N
D

)2

Sψ(f). (19)

The above statements are simplistic, to the extent that we
have not included the dynamic behavior, the noise bandwidth,
and other phenomena. The following limitations apply.

1) Digital Dividers: In digital signals, phase noise exists
only on rising and falling edges; thus, it is sampled at 2ν0,
twice its own frequency. Frequency division ÷D results in
lower sampling frequency, which originates aliasing. Aliasing
impacts only white noise because folding multiple aliases
proportional to 1/f has negligible effect. Thus, the white PM
noise of the divided signal is ruled by Sϕ(f) = (1/D)Sψ(f)
instead of (1/D2)Sψ(f).

2) Output Stage: For N/D � 1, the scaled-down phase
noise may hit the phase noise of the output stage. When this
happens, Sϕ(f) is limited by the output stage.

3) High-Order Multiplication: Angular modulations are
ruled by the property that the total power is constant; thus,
the sideband power comes at expense of the carrier power.
Carrier and nth sideband amplitudes are described by the
Bessel functions Jn(m). For N/D � 1, the random phase
in the full bandwidth may approach or exceed 2.4 rad, where
J0(m) = 0. When this happens, all the power goes into the
sidebands, and the carrier disappears. This is known as the
“carrier collapse” in multiplication.

F. Phase-Type (ϕ-Type) and Time-Type (x-Type) PM Noise

A relevant aspect of the noise behavior of components and
systems in the presence of large frequency changes is well

described by the terms phase-type and time-type phase noise
(see Fig. 5). We first introduced this idea in [55, Sec. 3] to
describe noise in the clock distribution of digital electronics.
The same terminology applies to the following:

1) amplifiers, logic gates, and so on, where the output
frequency is the same as the input;

2) frequency multiplication, division, and synthesis, where
the input frequency is scaled up/down by a rational
number;

3) frequency synthesis, where the output frequency is set
to different values.

1) Phase-Type (ϕ-Type) Phase Noise [see Fig. 5(a)]:
The quantity Sϕ(f) is a parameter of the device or system,
not affected by the carrier frequency. The dominant noise
processes impacts Sϕ(f) independently of ν0, and Sx(f)
follows from (9). Additive noise in amplifiers (see Section IV),
originating from the noise-to-carrier ratio (25), is like this.
Often flicker PM in amplifiers is also this type, described
by (26). Phase-type noise is also observed in frequency
dividers, DDSs, and DACs at low νo (output), where the
scaled-down input noise is lower than the limit set by the
output stage.

For example, the white PM noise of an RF amplifier in a ref-
erence condition is Sϕ(f) = b0 = 10−16 rad2/Hz, limited by
noise figure and carrier power. Section IV-C explains how this
can be calculated. Such noise is of the phase type, as shown
in Fig. 5(a). Using (9), we get Sx = 2.53 × 10−32 s2/Hz
when the carrier frequency takes the value ν1 = 10 MHz, and
Sx(f) = 1.62 × 10−34 s2/Hz at ν2 = 125 MHz. At ν2, the
time fluctuation x(t) is a factor ν1/ν2 = 0.08 smaller than at
ν1, and its PSD is a factor (ν1/ν2)2 = 0.0064 smaller.

2) Time-Type (x-Type) Phase Noise [see Fig. 5(b)]: The
quantity Sx(f) is a parameter of the device or system,
not affected by the carrier frequency. The dominant noise
processes impacts the time fluctuation Sx(f) independently
of ν0, and Sϕ(f) follows from (9). This behavior is observed
in ADCs, DACs, and DDSs at high frequencies, where the
PM noise is dominated by the jitter of the internal clock
distribution. Acoustic/seismic noise and other environment
effects on coaxial cables and optical fibers are obviously like
this.

For example, the clock distribution of a Cyclone III FPGA
has a flicker Sx = k−1 = 4 × 10−28 s/Hz. Other way
stated,

√
k−1 = 20 fs. Such noise originates from the

time fluctuation in the pipeline of logic gates, which is
of the time type [see Fig. 5(b)]. Using (9), we expect a
flicker b−1 = 1.6 × 10−10 rad2 (−98 dBrad2) at 100-MHz
clock, 6.3 × 10−10 rad2 (−92 dBrad2) at 200 MHz, and
2.5 × 10−9 rad2 (−86 dBrad2) at 400 MHz. The real exper-
iment behind this example [55, Fig. 6] shows a rather small
discrepancy from the ×(ν2/ν1)2 law, ≈ 0.5 dB for b−1 at the
three clock frequencies.

A PLL frequency multiplier is another example, where the
output is generated by a VCO phase-locked to a 10-MHz
reference after frequency division. The division modulo sets
the output frequency. The PLL’s own noise—not accounting
for the external reference—is typically determined by the
10-MHz phase comparator. Assuming that the comparator’s
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flicker is b−1 = 3.2 × 10−10 rad2 (−95 dBrad2), the output
b−1 is of −95 dBrad2 at 10-MHz output, −89 dBrad2

at 20 MHz, −83 dBrad2 at 40 MHz, and so on, in 6-dB steps
per factor-of-2. This is exactly what we observe on the internal
PLL of a Cyclone III FPGA, up to −59 dBrad2 at 640 MHz,
the maximum output frequency [55, Fig. 6].

3) Aliasing: The two noise types described may be modified
by aliasing, which changes the scaling rule from (ν2/ν1)2 to
ν2/ν1. Aliasing only affects white noise, not flicker, and other
reddish noise types because the tails of the PSD are too low for
the folded-down aliases to be significant. Aliasing is typically
seen in digital circuits, and in clock distribution of FPGAs and
other complex devices as well, at low frequency [55, Sec. 3].

G. Notation (Region 1.2)

We use the sans serif font in x(t) and y(t), instead of
the regular math font commonly found in the literature,
to emphasize that x and y are special quantities defined by (8)
and (12). This choice sets the regular x and y free for general
use. The same applies to the coefficients bi, di, hi, and ki.

Working with digital systems, we are regularly faced with
phase exceeding ±π because IQ detectors and digital dividers
keep a record of multiple cycles of the carrier. For this purpose,
we find it useful to describe the clock signal with the quantity
written in boldface, which is the sum of the deterministic (or
nominal) quantity plus the fluctuation

phase: ϕ(t) = 2πν0t+ ϕ(t) (20)

frequency: ν(t) = ν0 + (Δν)(t) (21)

time: x(t) = t+ x(t) (22)

fractional frequency: y(t) = 1 + y(t). (23)

The quantity x(t) is the most obvious. To the layman, x(t)
is the readout of a clock, which is the sum of the “exact time”
t plus the “error” x(t). A true layman would not consider
relativity here and would have no idea about the technical
meaning of words, such as “error” and “uncertainty.” The
quantity ν(t) is the instantaneous frequency, measured in a
sufficiently short time, ϕ(t) is the total phase accumulated
after IQ detection, and y(t) differs from 1 by the small
fractional fluctuation y(t).

IV. TWO-PORT COMPONENTS (REGION 1.8)

A. Additive and Parametric Noise

Most people find these concepts either quite simple,
or rather confusing. The point is that (1) describes the clock
signal as it is observed, hiding the physics of noise.

To understand, we start with the example of a noise-free
radio broadcasting ve(t) = Ve

[
1+αm(t)

]
cos

[
2πν0t+ϕm(t)

]
,

where αm(t) is AM and ϕm(t) is PM. AM and PM may be
present simultaneously, as in the old analog television6 and in
QAM modulations. The received signal

v(t) = V0

[
1 + αm(t)

]
cos

[
2πν0t+ ϕm(t)

]
+ n(t) (24)

6More precisely, TV audio is FM for compatibility with audio broadcasting,
which is equivalent to PM.

includes the noise n(t), which is the receiver’s own noise,
atmospheric noise, and other forms of noise collected by
the antenna. However, the signal is detected as (1). In fact,
ϕ(t) is the sum of ϕm(t) plus the image of n(t) after
phase detection. Similarly, α(t) is the sum of αm(t) plus
the image of n(t) after amplitude detection. Random n(t)
is called additive noise, while random αm(t) and ϕm(t)
are called parametric noise. The relevant difference is that
parametric noise originates from the low-frequency signals
ϕm(t) and αm(t) upconverted to sidebands, while additive
noise originates around ν0. If ϕm(t) and αm(t) are small7 and
have bandwidth Bm � ν0, their image in the RF spectrum is
a pedestal ±Bm wide centered at ν0.

As a relevant fact, white AM and PM noises result from both
white n(t) and white αm(t) and ϕm(t). The former is additive,
the latter is parametric. Hence, the common belief that white
AM/PM noise is only additive is incorrect. Conversely, “col-
ored” noise (1/f , 1/f2, and so on) is generally of parametric
origin. A narrowband n(t) well centered at ν0 appearing as
1/f noise is totally unrealistic, albeit conceptually possible.

B. Added Noise

The term “added noise” is seen in commercial phase noise
analyzers to denote the phase noise added by a two-port com-
ponent under test, usually an amplifier, when the component
is inserted in the signal path. This is an unfortunate choice
because the term “added” is easily mistaken for “additive.”
Of course, the “added” noise consists of white and flicker PM
noise, thermal drift, aging, and so on, while the “additive”
noise is white or quasi-white.

In proper terminology, added noise refers to a differential
measurement because the instrument measures the quantity
ϕ − ψ, i.e., output minus input, and its statistical properties
(spectra and variances, at will). The oscillator noise ψ is a
common-mode signal; thus, it is rejected.

C. White Noise

Given a white noise n(t) of PSD N [W/Hz] added to a
carrier of power P , the white PM noise’s PSD is

b0 =
N

P
[rad2/Hz]. (25)

Radio engineers often express the noise in terms of noise
factor F . Accordingly, N is expanded as N = FkT0,
where kT0 = 4 × 10−21 W/Hz is the thermal energy at the
standard temperature T0 = 290 K (17 ◦C). The noise figure
is defined by NF = 10 log10(F ). For reference, the phase
noise of a noise-free device (F = 1 or NF = 0 dB) in the
presence of a 1-mW carrier (0 dBm) is 4 × 10−18 rad2/Hz,
thus −174 dBrad2/Hz or −177 dBc/Hz. Besides thermal
energy, n(t) may originate from shot noise. In our experience,
experimentalists in optics are led to confusion by the fact that,
because noise is represented as a temperature, in optics, the
thermal energy is generally negligible.

7More precisely, small modulation angle |ϕm(t)| � 1 is necessary for
higher order sidebands to negligible and the PM to be accurately described by
the first USB and LSB. Conversely, only |αm(t)| < 1 is formally necessary,
but the |αm(t)| � 1 condition makes sense in real systems.
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Additional white PM noise, not accounted for in (25), can
result from parametric effects, as explained in Section IV-A.

D. Flicker Noise

Flicker noise has PSD proportional to 1/f . It has been
observed that the flicker PM of RF and microwave amplifiers
is rather constant versus P and ν0

b−1 = C (constant versus P and ν0). (26)

It follows from (25) and (26) that the corner frequency fc =
b−1/b0, where flicker equals white noise, depends on P .

Albeit the common integral
∫ b
a
(1/f) df = ln(b/a) diverges

for a → 0 or b → ∞, the practical result is surprisingly
small. To convince the reader, we evaluate ln(b/a) for the
largest conceivable bounds, from the reciprocal of the age of
the universe (a = 2.3 × 10−18 Hz) to the reciprocal of the
Planck time (b = 1.9 × 1043 Hz). The results is ln(b/a) =
140.3, i.e., 21.5 dB. Thus, if the flicker coefficient is k−1 =
10−24 s2 (

√
k−1 = 1 ps), the total 1−σ fluctuation is (140.3×

(10−24 s2))1/2 = 11.8 ps.
The general literature suggests that the spectrum of flicker

is 1/fη with η close to one. It turns out that the input-
to-output delay never grows too large even for η > 1. Try
this yourself with η = 1.1 and the integration bounds from
10−9 Hz (the reciprocal of 30 years, the supposed device’s
lifetime) to 109-Hz noise bandwidth (above the highest Fourier
frequency found in any commercial noise analyzer).

E. Input-to-Output Delay

The fluctuation (1−σ) of the input-to-output delay of a
two-port device is given by

δT =

√∫ b

a

Sx(f) df (27)

which follows from the time-fluctuation PSD integrated on the
appropriate bandwidth [a, b]. Common sense suggests that δT
does not diverge nor does it grow disproportionately during the
device’s life. This limits the phase noise to finite-bandwidth
white PM noise and to flicker PM noise.

Environmental parameters, such as humidity and thermal
drift, have only localized effects in time or are periodic.
Random walk, aging, and other ever-growing phenomena are
possible, but their amount is generally small enough not to
significantly affect the delay over the lifetime of the device.
Electrical engineers may be familiar with similar effects in
voltage references or in the offset of analog components.

F. Example of Noise in a Two-Port Component

We consider an amplifier having NF = 2 dB and flicker
coefficient b−1 = 2 × 10−11 rad2 (−107 dBrad2), process-
ing a 10-GHz carrier of power P = 62.5 μW (−12 dBm). Let
us calculate the noise spectrum and the rms delay fluctuation
assuming a low cutoff f1 = 10−8 Hz (reciprocal of three
years, rounded) and a bandwidth f2 = 50 MHz.

1) PM Noise PSD: Using b0 = FkT/P , in dB, we get
10 log10 (b0) = +2 − 174 + 12 = −160 dBrad2/Hz; hence,
b0 = 10−16 rad2/Hz. The phase noise PSD is

Sϕ(f) = b0 +
b−1

f
= 10−16 +

2× 10−11

f
rad2/Hz.

Using b0 = b−1/f , the corner frequency is fc =
2 × 105 Hz.

2) Phase–Time PSD: Using (9) with ν0 = 10 GHz, we get

Sx(f) = k0 +
k−1

f
= 2.6× 10−38 +

5.1× 10−33

f
s2/Hz.

3) RMS Delay Fluctuation: This is evaluated using (27).
White noise (δT )0 =

√
k0(f2 − f1) = 1.1 × 10−15 s.

Flicker noise (δT )−1 =
√

k−1 ln(f2/f1) = 4.3 × 10−16 s.

Total δT =
√

(δT )20 + (δT )2−1 = 1.2 × 10−15 s.
4) Comment: Common sense suggests that the delay of

an amplifier can be of a fraction of a nanosecond (several
periods of the 10 GHz carrier) for a wideband device, with
a thermal coefficient up to 10−3/K, if no special design
care is taken. As a result, we expect that the thermal effects
exceed the random noise, and the random noise is visible only
beyond 10 Hz, where the temperature may be stabilized by the
thermal capacitance (inertia).

G. Suggested Readings About Two-Port Components

Reference [56] is an extensive treatise of phase noise in
amplifiers. Arguably, [57] is the first article suggesting that
the flicker noise (the parameter b−1) in RF and microwave
amplifiers is independent of power and frequency over a rather
broad range.

The double-balanced mixer is a tool of paramount impor-
tance in PM noise and frequency stability. Reference [58] is a
useful tutorial, and [59] provides experimental data about the
noise of commercial double-balanced mixers for phase noise
measurements.

We recommend the book [60] to understand analog–digital
conversion. Reference [55] is a tutorial on phase noise digital
systems. The origin and the propagation of phase noise in
frequency division are explained in [61] and [62].

Phase locking and frequency synthesis are totally different
kinds of two-port systems. We suggest [63], [64], and [65] for
phase locking, [66] and [67] for digital frequency synthesis,
[68] for the phase noise in digital synthesis, and [41] for a
general treatise about modern synthesizes.

V. OSCILLATORS AND THE LEESON EFFECT (REGION 1.9)

The oscillator [see Fig. 6(a)] consists of a loop where
the resonator sets the oscillation frequency ν0 and the sus-
taining amplifier compensates for the resonator loss. Gain
clipping (nonlinearity) is necessary to stabilize the amplitude,
hence the typical dominance of PM over AM. The buffer
isolates the loop from the load.

Everyday experience suggests that, unlike the two-port
components, the time fluctuation x(t) of an oscillator can be
quite large. The reason is that the oscillator accumulates the
“error” of each cycle, however small it may be.
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Fig. 6. Phase noise mechanisms inside an oscillator. (a) Conceptual schematic
of the oscillator, where the signal is the microwave/RF sinusoidal oscillation
at the frequency ν0. (b) Phase noise equivalent of the oscillator, where the
signal is the random phase of the microwave/RF circuit shown above. In this
representation, phase noise is always additive, regardless of its physical origin.
The grayed blocks in (a) and (b) represent the noise of the resonator and the
buffer, not included in the equations.

Resonator, sustaining amplifier, and buffer all introduce
phase noise (amplitude noise too, but this is a more specialized
topic, not considered here). The phase modulators in Fig. 6(a)
are necessary to model the phase noise of the various part of
the oscillator in the general case, including white and colored
processes. However, these modulators make the mathematical
treatise difficult. The phase equivalent model, introduced in
[69, Chapter 4] and shown in Fig. 6(b), avoids such difficulty.
The signal circulating in Fig. 6(b) is the phase fluctuation of
Fig. 6(a). In this representation, the following holds.

1) Sustaining amplifier and buffer map into “phase ampli-
fiers” of gain exactly equal one because they “copy” the
input phase to the output, unchanged. Otherwise stated,
the amplifier’s delay cannot be stretched/shrunk.

2) Random PM maps into noise added in the signal path,
regardless of the nature of the process.

3) The phase model is linear because gain clipping has no
effect on phase—at least not first-order effects.

4) The resonator (narrowband second-order filter) maps
into a single-pole LPF.

This representation holds for a large quality factor, say,
Q � 50, which ensures that signals are sinusoidal. Accepting
this limitation, the approximation in Fig. 6(b) adequately
models the more general oscillator in Fig. 6(a). Breaking the
high-Q hypothesis, the simple mathematical treatise provided
below is no longer valid because distortion introduces coupling
between amplitude and phase.

We give a short summary of the original derivation
[69, Secs. 4.4 and 4.5]. The low-pass impulse response8 of

8The standard symbol of the impulse response is h(t), and H(s) is its
Laplace transform. Here, we use b(t) ↔ B(s) to save h(t) ↔ H(f) for the
oscillator.

Fig. 7. Typical noise spectra occurring in oscillators. (a) Type A phase
noise spectrum, often found in microwave oscillators. (b) Type B phase noise
spectrum, often found in RF and quartz oscillators. (a) and (b) Noise Sψ(f)
of the sustaining amplifier, the flicker corner at frequency fc, the Leeson
corner at frequency fL, and the oscillator noise Sϕ(f). The fluctuation of
the resonator’s natural frequency and the noise of the output buffer are not
included.

the resonator is b(t) = (1/τ) e−t/τ , where τ = Q/πνn is
the relaxation time, Q is the quality factor in actual load
conditions, and νn is the natural frequency. In practice, the
oscillation frequency ν0 is so close to νn that they are
interchangeable. The Laplace transform of b(t) is B(s) =
(1/τ)/(s+1/τ). The cutoff frequency of the low-pass equiv-
alent is called Leeson frequency, equal to half the resonator’s
RF bandwidth ν0/Q

fL =
ν0
2Q

. (28)

Letting aside the buffer noise, we introduce the phase noise
transfer function of the oscillator

definition: H(s) =
Φ(s)
Ψ(s)

(29)

where Φ(s) and Ψ(s) are the Laplace transforms of the output
ϕ(t) and of the input ψ(t), respectively. Inspecting the loop
on the left-hand side of Fig. 6(b), we find that H(s) =
1/[1−B(s)]. The latter expression is derived from the classical
rules of feedback, the same used in textbooks to analyze a
simple control loop, of to derive the gain of the operational
amplifier in a noninverting configuration. Expanding H(s)
and replacing s → j2πf , we get |H(f)|2 = 1 + f2

L/f
2.

The multiplication by 1/f2, which occurs at f < fL, is the
“soul” of the Leeson effect: the oscillator integrates the phase
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Fig. 8. Example of phase noise of an oscillator. The original plot is courtesy
of Ulrich L. Rohde, Synergy Microwave Corporation, used with permission.
We added the polynomial approximation (the units of bi coefficients are
omitted), the estimated amplifier noise, and other comments.

fluctuation ψ(t) occurring in the loop. The oscillator phase
noise is Sϕ(f) = |H(f)|2Sψ(f); thus,

Sϕ(f) =
[
1 +

f2
L

f2

]
Sψ(f). (30)

Plugging the amplifier noise Sψ(f) = b−1/f + b0 in (30),
we find the two typical patterns of Fig. 7. Interestingly, the
oscillator spectrum contains either 1/f2 or 1/f noise, not
both. The 1/f2 noise is common in microwave oscillators,
characterized by high ν0 and low Q; thus, fL� fc. The 1/f
noise is typical of RF and quartz oscillators, characterized by
low ν0 and high Q.

The noise of the resonator and the buffer, not included
in (30) and not shown in Fig. 7, adds. In most quartz
oscillators, the 1/f3 noise due to the 1/f fluctuation of the
resonator natural frequency exceeds the 1/f contribution of
the electronics turned into 1/f3 via the Leeson effect [70].
In such cases, the Leeson effect is hidden below the resonator’s
fluctuations.

A. Example of Noise in a Microwave Oscillator

Fig. 8 shows the phase noise of the DRO-100, a com-
mercial 10-GHz oscillator based on a dielectric resonator.
By comparison with Fig. 7, this oscillator is clearly of type A,
characterized by fc < fL. The coefficients b0, b−2, and
b−3 are obtained from the graphical approximation of the
measured spectrum with the theoretical straight line having
slope 0, −2, and −3. The frequencies fc and fL are obtained
graphically from the straight-line approximation. We start our
interpretation from the right-hand side (f = 10 MHz) to the
left.

The white PM noise b0 = 10−17 rad2/Hz suggests that
the power at the input of the sustaining amplifier (the location
where the power is the lowest) is P ≈ 0.5 mW. The power in
the resonator is substantially the same. This result is obtained
using (25), guessing that the noise figure of such an amplifier
is 1 dB, quite a plausible value for good amplifiers.

The white frequency noise b−2/f crosses the white phase
noise b0 at 3.75 MHz. This is clearly the Leeson frequency
fL. Using (28), we estimate the resonator’s quality factor
Q = 1330 in actual load conditions.

Finally, the flicker FM noise b−3 = 14.1 rad2Hz2 crosses
the white FM noise at fc = 100 kHz. Equation (30) with
f � fc suggests that the flicker PM of the sustaining amplifier
is of 10−12 rad2 (−120 dBrad2).

B. Suggested Readings About Oscillators

Our presentation is based on [69], which includes the
theoretical proof of the Leeson effect, the analysis of noise
sources in the loop and at the output, and a chapter about the
reverse engineering of oscillators from phase noise. Rather
than focusing on the schematic, Rubiola [69] analyzes the
oscillator as a system. A white paper [71] extends the theory
to amplitude noise. The limitation of this approach is that it
is suitable only to a high-Q resonator (say, Q � 50), where
all relevant signals are sinusoidal.

Numerous RF and quartz oscillator schemes make use of
a negative-resistance amplifier in parallel to the resonator.
We propose two classical references about the noise of such
amplifiers: [72] and [73].

Other approaches deserve attention, chiefly: 1) models based
on the limit cycle, derived from Einstein’s diffusion theory,
i.e., Loh et al. [74], [75] and Demir et al. [76], or from the
Langevin equations, Kärtner et al. [77] and 2) the impulse
sensitivity function proposed by Lee and Hajimiri [78], [79],
which is good at describing low-Q oscillators, like those
commonly found in microelectronics. In addition, Pankratz
and Sánchez-Sinencio [80] provide a large survey specific to
oscillators in integrated circuits.

Digging into the origins, the widely cited van der Pol
oscillator [81] is about chaos in oscillations, rather than phase
noise. Reference [82] is arguably the first article that analyzes
the phase noise in electronic oscillators, and [83] is the
article that introduces the phase noise mechanism in feedback
oscillators, later known as the Leeson effect. A review article
by Leeson [52] is available.

VI. ALLAN VARIANCE

The classical variance9

σ2 =
1

n− 1

n∑
i=1

[xi − μ]2 (31)

where μ = (1/n)
∑n
i=1 xi is the average, fails at describing

time divergent processes because: 1) it depends on the aver-
aging time used to take the samples xi and 2) it depends
on the number n of samples. Try this yourself, feeding
xi = 1.0001, 1.0002, 1.0003, . . . , with n = 2, 4, 8, . . . in (31).
A solution consists of introducing the averaging time as a
parameter, denoted with τ , and to set n = 2. This is the
minimum n, which gives a valid σ2. Welcome to the AVAR.

9This is a simplified notation. More precisely, (31) describes an estimator;
thus, it should be written as �σ2 = . . . [xi − μ̂]2, where μ̂ = . . .
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A. Definition and Evaluation (Region 1.3)

The two-sample (Allan) variance AVAR of the quantity y is
defined as

2-sample variance: σ2
y (τ) = E

{
1
2

[
y2 − y1

]2
}

(32)

where E{ } is the mathematical expectation, and the averages
y1 and y2 are taken over contiguous time slots of duration τ .
The quantity (1/2)

[
y2−y1

]2
is the classical variance evaluated

with two samples. This is immediately seen by replacing n = 2
in (31), and then, μ = (x1 + x2)/2; finally, we identify the
generic xi with the average fractional frequency fluctuation yi.
The quantity ADEV, a deviation, the square root of AVAR—
and similarly MDEV, PDEV, and so on defined later—can
be seen as an estimator of the uncertainty of the quantity y,
accumulated in the time τ after reset or calibration.

In experiments, E{ } is replaced with the estimator

σ̂2
y (τ) =

1
2(M − 1)

M−1∑
k=1

[
yk+1 − yk

]2

(33)

which is the average on M − 1 realizations of y2 − y1; thus,
it requires M contiguous measures of y.

At first reading, one can take (33) as the formula to evaluate
AVAR, ignoring the “hat.” Some authors use (33) as the
definition of AVAR. That said, keeping a clear difference
between σ2

y (τ) and its estimate σ̂2
y (τ) is important in theo-

retical analysis and in the evaluation of the uncertainty.
It is often convenient to rely on time measurements xk, using

yk = (xk+1 − xk)/τ . Accordingly, (33) rewrites as

σ̂2
y (τ) =

1
2(M − 1)

M−1∑
k=1

[
xk+2 − 2xk+1 + xk

τ

]2

(34)

which requires M + 1 measures of x(t) spaced by τ .

B. Spectral Response (Region 1.5)

The AVAR can be calculated from the spectrum using

σ2
y (τ) =

∫ ∞

0

|HA(f ; τ)|2 Sy(f) df (35)

where the transfer function

|HA(f ; τ)|2 = 2
sin4(πτf)

(πτf)
(36)

is similar to an octave BPF centered at f 
 0.45/τ . Unfortu-
nately, such a filter suffers from significant side lobes (inset in
the plot of Region 1.5). Notice that σ2

y (τ) does not converge
for white PM noise and flicker PM noise, unless an LPF is
introduced to limit the bandwidth, whose cutoff frequency is
denoted with fH .

C. Overlapped Allan Variance

An efficient way to measure the AVAR is to sample x(t) at
the rate 1/τ0, taking τ = mτ0, integer m. The kth value of
the fractional frequency is evaluated as

yk =
xk+m − xk

mτ0
. (37)

Fig. 9. Evaluation of the overlapped AVAR.

The overlapped AVAR consists of using partially overlapped
realizations of y2 − y1 in (32), separated by the minimum
amount τ0. This concept is illustrated in Fig. 9. Accord-
ingly, (34) becomes

τ = mτ0

σ̂2
y (mτ0) =

1
2(M − 1)

M−1∑
k=1

[
x2m+k − 2xm+k + xk

mτ0

]2

(38)

which takes 2m+M − 1 samples; thus, a measurement time
T = (2m+M − 2)τ0.

The first advantage of overlapping is smaller uncertainty.
In fact, the confidence interval Δσy/σy =

√
2/D is related to

the number D of degrees of freedom. In turn, D is equal to the
number of samples of yk+1−yk in the case of white PM noise
(uncorrelated samples), it gets progressively smaller for slower
noise phenomena, and it degenerates to 2 in the case of pure
drift. A simple example deserves attention. Suppose that we
have a record of 3 × 105 samples spaced by τ0 = 100 ms;
thus, T = 3 × 104 s = 8.33-h acquisition time. At τ =
104 s, we have only two realizations of yk+1− yk using (34),
while, in the same conditions, we have 105 realizations if we
opt for (38). At a deeper sight, such realizations are highly
correlated, but the larger number is still beneficial to the
reduction of uncertainty.

A further advantage of overlapping is that it solves the
erratic response of AVAR in the presence of cyclic distur-
bances of period T ≈ τ/0.45 (2.2τ ), such as the diurnal
temperature. This happens because multiple realizations of
AVAR are averaged based on measures of y2−y1 progressively
shifted by mτ0, as shown in Fig. 9.

The AVAR with no overlap is seldom used, if ever. Gen-
erally, the term “AVAR” refers to the overlapping algorithm
with no need of saying so.

VII. OTHER OPTIONS FOR THE TWO-SAMPLE VARIANCE

A. Frequency Counters and Weighted Averages (Region 2.1)

Introducing the classical AVAR, we have defined y as the
uniform average of y(t) over the time τ . Other options make
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sense based on the redefinition of the average y as

y(τ) =
∫ ∞

0

y(t)w(t; τ) dt. (39)

The weight function w(t; τ) takes different forms, among
which the following deserve attention.

1) wΠ(t; τ) gives the uniform average, the same used in
Section VI (there is still no change). The classical
reciprocal counter, also called Π counter after [84], uses
wΠ. The symbol Π recalls the rectangular shape of
wΠ(t; τ).

2) wΛ(t; τ) gives the triangular average, which is calcu-
lated averaging on a sequence of highly overlapped
rectangular averages. The corresponding instrument is
the Λ counter after [84]. Of course, the Greek letter Λ
is chosen because of its triangular shape. The benefit
of such a counter is a high rejection of the wideband
white PM noise of the trigger at the counter input. Some
commercial instruments implement the Λ averaging,
often without saying. They can be identified from the
“precision” (response to the trigger noise) proportional
to 1/τ

√
τ instead of 1/τ .

3) wΩ(t; τ) relates to a frequency measurement imple-
mented as a linear regression on phase–time data. The
corresponding instrument is called Ω counter after [85].
The benefit of the Ω counter is the highest rejection of
the white PM noise, by theorem. The Greek letter Ω
is the graphically closest to the parabolic shape of the
frequency response. Besides, the letter Ω indicates that
this is the ultimate counter, to the extent that no other
counter performs better rejection of white PM noise.
The “precision” (response to the trigger noise) is propor-
tional to 1/τ

√
τ as in the Λ counter, just with 1.25 dB

lower background noise (a factor of 3/4). Very few
commercial instruments implement this algorithm.

4) wΔ(t; τ) is equivalent to the difference between two
contiguous measures taken with a Π frequency counter.
This option is listed only for completeness because,
to the best of our knowledge, it is not implemented in
commercial counters.

Like the overlapped AVAR, y(t) is sampled at a suitable
frequency 1/τ0; thus, it holds that τ = mτ0. As a consequence,
the patterns of the Λ and Ω counters shown in Region 2.1 hold
for m � 1, or equivalently τ � τ0, so that the continuous
approximation holds.

B. Generalized Two-Sample Variances (Region 2.2)

The definition (32) is more general than the classical AVAR.
In fact, feeding the weighted averages (39) into (32) results in
different types of variance, which can all be described by the
same formula

σ2
y (τ) = E

{∫ ∞

0

[
y(t)w(t; τ)

]2

dt

}
. (40)

Notice that the difference y2 − y1 is now included in the
wavelet-like function w(t; τ). The latter is similar to a wavelet
but for the normalization of finite-power signals (power-type
signals) instead of finite-energy signals (energy-type signals).

We have the following options:

wA(t; τ) = wΠ(t− τ ; τ) − wΠ(t; τ)→ AVAR Aσ2
y (τ)

wM (t; τ) = wΛ(t− τ ; τ) − wΛ(t; τ)→ MVAR Mσ2
y (τ)

wP (t; τ) = wΩ(t− τ ; τ) − wΩ(t; τ)→ PVAR Pσ2
y (τ)

wH(t; τ) = wΔ(t− τ ; τ) − wΔ(t; τ)→ HVAR Hσ2
y (τ).

As with the frequency counters, the patterns of wM (t; τ)
and wP (t; τ) shown in Region 2.2 are the limit for τ � τ0,
or equivalently for m � 1, where the continuous approx-
imations hold. The formulas of Region 2.7 hold under this
assumption.

Using commercial frequency counters to get a data stream
yk, we recommend attention to the contiguity of averages.
Such contiguity is implied in the waveforms of Region 2.2.
The case of MVAR is subtle because “contiguous” triangular
averages overlap by one side, instead of touching one another
by one edge. Something like ∧∧∧∧. . . instead of ∧∧∧∧. . .
Thus, if the measurement of y takes 2τ , the measurement
of y2 − y1 takes 3τ . Dawkins et al. [86] point out that some
Keysight counters provide a data stream of the latter type,
where continuous averages touch one another by one edge.

Our notations Aσ2
y (τ), Mσ2

y (τ), Pσ2
y (τ), and Hσ2

y (τ) seem
more elegant than AVAR, MVAR, PVAR, and HVAR, but it
is not used in the literature.

We draw the reader’s attention to the fact that (40) may
be misleading in the case of HVAR because it hides the fact
that HVAR is a second-difference variance. HVAR is rather
different from the other variances, chiefly in the fact that
it converges for integrated flicker FM and random run FM
(1/f3 and 1/f4 FM), and it is blind to frequency drift.

C. Time Variance (Region 2.6)

The time variance TVAR is defined as

σ2
x (τ) =

1
3
τ2 Mσy(τ). (41)

TDEV, the square root of TVAR, is an estimator of the
uncertainty of the time elapsed after the duration τ . TDEV is
often used in telecom, e.g., to assess the TIE, defined in [32],
and the holdover performance, i.e., the clock error accumulated
between synchronizations [33, Part 5.1: Timing characteristics
of slave clocks…].

D. Additional Options

The following options are highly specialized instances of the
AVAR, beyond the scope of this article. They are mentioned
for completeness and left to experts.

1) Dynamic Allan Variance: A time series of N data is
sliced into m subseries of n = N/m data. Computing the
AVAR for each subseries, we end up with a 3-D plot, which
shows the changes in AVAR versus time, most useful for
diagnostic purposes. This variance and its properties are found
in a series of articles by the same team [87], [88], [89], [90],
[91], but it does not seem to have been followed by other
authors and research teams.
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2) Total Variance: The time series is circularized by joining
a copy with time reversed, as often done in the domain of spec-
tral analysis. Circularization cannot increase the number D of
degrees of freedom inherent in the experimental outcomes,
but it makes their exploitation more efficient for the detection
of certain phenomena. This concept, as described in [92] and
[93], can be applied to all wavelet variances.

3) Thêo1, ThêoH, and ThêoBR: These estimators are based
on the idea that two measures of duration τ � � τ whose
centers are spaced by τ provide a precise estimation of the
slow processes occurring at τ , under the condition that τ � is
long enough to average out the fast processes. These ideas
are found in [94], [95], and [96]. The benefit is to extend the
maximum τ beyond T /2, where T is the duration of the data
record. For example, applying ThêoH to a long data record of
an atomic time scale, it is possible to extend the plot up to
τ = 0.8 T . Thus, these variances are even more efficient than
AVAR at estimating the fluctuations occurring at large τ . This
benefit comes at the cost of a higher computing burden and
additional interpretation difficulty.

E. Choosing the Most Appropriate Variance

For general use, the variances described are broadly similar
to one another, and none is really “the best” or just “bad.”
Each one has its own “personality,” which makes it more
suitable in some specific cases and weaker in other cases.
Such personality follows from the wavelet-like patterns shown
in Region 2.2. A summary of the main options is given in the
following.

1) Normalization: In signal processing, normalization for
white noise is the most common option. A different choice is
made here because the two-sample variances are issued from
timekeeping. The normalization is chosen for all the variances
to have the same response σ2

y (τ) = (1/2)D2
yτ

2 to the linear
frequency drift Dy (the “linear drift” row in the lower part of
Region 2.7). A consequence is that different variances have
different responses to the other noise processes because the
spectral response |H(fτ)|2 differs (Region 1.5). In addition,
the corners separating the noise processes are not the same
(Regions 1.7 and 2.3–2.5). Comparing the plots requires a
small effort of interpretation. For example, the white FM noise
Sϕ = b−2/f

2 → Sy = h0 shows up as

Aσ2
y (τ) =

1
2

h0

τ
= 0.50

h0

τ
(Allan)

Mσ2
y (τ) =

1
4

h0

τ
= 0.25

h0

τ
(Modified Allan)

Hσ2
y (τ) =

1
3

h0

τ

 0.33

h0

τ
(Hadamard)

Pσ2
y (τ) =

3
5

h0

τ
= 0.60

h0

τ
(Parabolic)

with a maximum difference of a factor of 2.4 (3.8 dB).
2) AVAR: This the best choice when we want to evaluate

σ2
y (τ) up to the largest τ for a given data record of duration T ,

that is, τ = T /2. This is the typical case of atomic time scales,
where the oscillators are continuously monitored, and we focus
on the slow processes.

Because wA(t; τ) takes 2τ for one realization of σ2
y (τ),

averaging on M � 1 realizations is made possible by
overlapping the measures with τ0 � τ (see Section VI-C).

The uniform weight of wA(t; τ) features the highest effi-
ciency in picking up the energy of y. By contrast, AVAR is
unsuitable for the measurement of white PM noise because
Aσ2

y (τ) 
 0.076 fHh2/τ
2 (Region 2.7); thus, the result is

highly dependent on the bandwidth fH . This is not a problem
for the slow phenomena that we mentioned. Finally, it is worth
mentioning that, in the presence of white FM noise only,
AVAR gives the same result as the classical variance.

3) MVAR: This is a good choice in the presence of wide-
band noise typical of fast processes. MVAR originates from
optics, where precise and efficient measurement of white PM
noise is a desired feature.

By contrast, MVAR is inferior to AVAR in the efficient use
of T because the support of wM (t; τ) is 3τ wide instead of 2τ .
This may not be a problem when the physical phenomena that
we are interested in occur at small or moderate τ , say hours.

4) HVAR: This variance is useful for the measurement of
strong slow phenomena occurring in some circumstances, for
example, in the absence of temperature stabilization. In fact,
unlike the other variances described here, it converges for
integrated flicker FM noise and for integrated random walk
FM noise, also called “random run.” Such processes are
the h−3/f

3 and h−4/f
4 terms of Sy(f) or equivalently the

b−5/f
5 and h−6/f

6 terms of Sϕ(f). By contrast, HVAR is
blind to linear drift. This makes HVAR a specialized tool,
particularly useful when high drift makes it difficult to estimate
the other noise parameters.

Finally, HVAR, such as AVAR, gives ambiguous responses
to white PM noise, as it depends on the instrument bandwidth
fH . Like MVAR, wH(t; τ) takes a time equals to 3τ .

5) PVAR: The computation of σ2
y (τ) at τ = mτ0 requires

a data record of duration T = kτ , where k > 2 for
AVAR and PVAR, and k > 3 for MVAR and HVAR. The
minimum T depends on the noise process, the confidence
level required, and the variance we choose. Running the
measurement, we start seeing white PM noise at short T , then
flicker PM, white FM, and so on as T increases. Now, we take
a different standpoint, asking which is the minimum T to
detect a “new” noise phenomenon, out of the “previous,” faster
one. For example, which is the shortest T to see that flicker
FM is above the white FM, with 95 % probability? Among the
four variances considered here, PVAR is the best at doing this
from white PM to RW FM. Yet, the corner between RW FM
and frequency drift is still better detected by AVAR.

F. Some Pieces of Advice

Beginners should restrict their attention to ADEV and
MDEV, the square root of AVAR and MVAR. ADEV and
MDEV are both available in commercial instruments, and both
benefit from the size effect of a wide community.

For historical reasons, ADEV is definitely the manufac-
turers’ preferred option. Reading technical documentation,
we recommend attention to possible confusion between ADEV
and MDEV under the term “Allan deviation,” with a possible
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“modified” omitted or implied. The ITU-T Recommendation
G.8260 [32] compares ADEV, MDEV, and TDEV from the
standpoint of telecommunications. MDEV seems the favorite
tool in telecommunications [97] and enables the direct calcula-
tion of TDEV using (41). However, MDEV takes 50% longer
acquisition time T .

Doing one’s own measurements, MDEV is, in most cases,
the best compromise. In fact, MDEV improves on ADEV in
the detection of fast noise processes (white and flicker PM) and
is as suitable as ADEV to detect all the other noise processes.
AVAR is still the best option for the measurement of the
atomic clocks10 intended for time scales, where increasing T is
costly or impossible. Finally, the reader should remember that
normalization makes MVAR always “optimistic” compared to
AVAR, as seen in the related columns in Region 2.7.

Looking at the future, PDEV may replace MDEV because
it outperforms it in all parameters at no cost but computing
power. Likewise, Thêo may replace ADEV because of the
more efficient use of T at representing longer values of τ .

G. Example of MDEV

We measure the stability of a miniature Cs oscillator. The
oscillator is a laboratory prototype based on the coherent
population trapping (CPT) principle in a Cs microcell. The
actual experiment is described in [98] and the fabrication of
the microcell in [99]. For technical reasons specific to the
experiment, the frequency is sampled at 150-ms intervals and
preprocessed to provide a stream of values of yk uniformly
averaged on contiguous intervals of 1 s. This sets τ0 = 1 s.
The total number of samples is 389 998, for a total duration
T ≈ 4.5 days.

Fig. 10 shows the MDEV of the experiment described,
processed with the SigmaTheta software tool. Starting from
uniformly averaged data, a practical minimum of eight to
ten samples is needed to approximate the triangular average
(Regions 2.1 and 2.2.). Thus, MDEV is plotted for τ =
2nτ0 starting from τ = 8τ0 = 8 s. At the scale of this exper-
iment, the H maser used as the reference can be considered
ideally stable, and the noise of the instrument is negligible as
well.

The SigmaTheta software package provides the following
pieces of information (see Sections IX and XI):

1) the bare values of Mσy(τ), shown as black crosses;
2) the Bayesian estimates of Mσy(τ), shown as green

donuts;
3) the uncertainty bars;
4) the identification of the most relevant noise processes,

shown as the colored straight lines of slope 1/
√
τ ,

constant versus τ , and
√
τ .

10In the International Coordination of Metrology under the guidance of
BIPM, an atomic oscillator is a “clock” only after six months of uninterrupted
contribution to UTC/TAI. Some commercial oscillators are called clocks by
the manufacturer, implying that they are suitable to contribute to UTC/TAI.
This is perfectly sound because hundreds of such Cesium clocks actually
do this, as well as hydrogen masers. However, the term clock is also used
as a pretentious replacement for a precision oscillator even if reliability and
long-term stability are insufficient for the oscillator to be even considered as
a contributor to UTC/TAI.

Fig. 10. Example of MDEV obtained with the SigmaTheta software
tool. Notice the difference between the calculated values of MDEV (black
crosses) and the Bayesian estimates (green donuts), and the asymmetry of
the uncertainty bars. Data are courtesy of Moustafa “Mouss” Abdel Hafiz,
FEMTO-ST Institute.

It is worth pointing out that the uncertainty bars systematically
extend upward more than downward. This is a kind of “signa-
ture” of the inverse problem, as opposed to the bare simulation
approach.

H. Suggested Readings About Variances

1) General References: The free booklet [36] is probably
where most readers should start. Sponsored and distributed
by NIST, it provides extensive coverage of most variances
(AVAR, MVAR, HVAR, and so on) and the evaluation of the
confidence intervals, with numerous examples and plots made
with Stable32. Reference [100] is a review article about the
AVAR, and [101] suggests that the AVAR can be used as a
diagnostic tool. A wealth of information is available in a Spe-
cial Issue of the IEEE TRANSACTIONS ON ULTRASONICS,
FERROELECTRICS, AND FREQUENCY CONTROL celebrating
the 50th anniversary of the AVAR [102]. A historical review is
available [103], written by two of the most important contribu-
tors to the rise of this branch of knowledge. Reference [104] is
the original article that introduces the sample variances, later
called AVAR, and [105] introduces MVAR.

2) Π and Λ Counters, and the Related Statistics: Reference
[84] is the first article that defines Π and Λ counters and the
mathematical framework underneath, later extended to the case
of nonoverlapping triangular averages [86]. However, the basic
ideas were already in [106] and [107] yet without developing
the statistical framework. A wealth of practical knowledge
about the architecture of high-resolution counters is available
in a review article [108].

3) Ω Counter and the Parabolic Variance: The linear
regression of phase data is a rather obvious way to estimate a
frequency. It was used in the HP5371A HP5372A time interval
analyzers11 in the late 1980s and at Pendulum [109]. The name

11Information provided by Magnus Danielsson, NetInsight, Sweden.
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“Ω counter” comes from [85], which introduces the related
mathematical framework for frequency metrology. Feeding
the linear-regression estimates into (32), we get PVAR. This
idea came independently of [110] and [111], and the name
PVAR was decided together by the two teams. Reference
[111] digresses the advanced statistical properties of PVAR,
including the Bayesian statistics and the minimum duration of
the data record to detect a noise process.

4) Aliasing: Vernotte et al. [112] provide theory and insight
on spectral aliasing, and Calosso et al. [26] give an interesting
perspective about aliasing in the AVAR and MVAR, covering
the effect of spectral bumps and “blue noise,” often found
in long-range optical frequency-distribution systems. Finally,
Bernier [113] provides useful insight into aliasing and cutoff
frequency for MVAR.

VIII. RELATIONS BETWEEN PHASE NOISE AND VARIANCE

Regions 1.6 and 1.7 show a plot of Sy(f) besides AVAR
σ2

y (τ) for the noise processes from white PM to random-walk
FM. The following facts deserve attention.

1) There is a kind of mirror symmetry between the plots
of Sy(f) and σ2

y (τ). The fastest process, white PM,
is on the right-hand side of Sy(f) and on the left-hand
side of σ2

y (τ). Vice versa, the FM random walk is on
the left-hand side of Sy(f) and on the right-hand side
of σ2

y (τ).
2) The cutoff frequency fH has a dramatic effect on white

PM noise, only a weak effect on the flicker PM noise,
and virtually no effect on slower processes.

3) The 1/τ2 region of σ2
y (τ) is ambiguous, in which it

represents both white PM and flicker PM noise.
4) The conversion from Sϕ(f) to σ2

y (τ) is always
possible, while the opposite suffers from limita-
tions. This is emphasized by the road signs between
Regions 1.6 and 1.7.

5) The corner τ where the processes cross one another may
occur rather far from the values one expects intuitively.

If we have both phase noise and variance measures, the
conversion from Sϕ(f) to σ2

y (τ) is a great way to check on
consistency. However, this is possible only if Sϕ(f) extends to
sufficiently low f to reveal the slow processes shown by σ2

y (τ).
Regardless, the conversion is an exercise of interpretation that
we recommend.

A. Conversion from PM Noise to Allan Variance (Region 2.7)

The reader should first refer to Region 1.11 for the con-
version Sϕ(f)→ Sy(f) and then to Region 2.7 for Sy(f)→
σ2

y (τ), based on (35) and (36). A simple procedure is shown
in Fig. 11 and detailed in the following.

0) Start with a log–log plot of phase noise. Since, in most
cases, the phase noise is given as 10 log10[L (f)], you
have to convert it into Sϕ(f) using Sϕ(f) = 2L (f),
i.e., add 3 dB (Region 1.11)

1) Approximate the true spectrum with the straight lines
that represent the polynomial law. Proceed from the
right-hand side (white PM noise) to the left, not vice
versa. This is best done with a drawing app inserting a

Fig. 11. Conversion from phase noise to AVAR. The colors of the straight
line approximation recall the frequency, from reddish (low) to bluish (high).
The conversion from phase noise to the other two-sample variances is an
obvious extension.

straight line of exact slope (0, −1, −2, and so on) and
shifting it to fit the plot. The coefficients b0, b−1, b−2,
and so on are the value of the corresponding straight
line found at f = 1 Hz. Even with little training,
visual inspection is efficient at approximating the noise
process and ignoring the artifacts. Sliding old-fashioned
set drafting squares on a printed spectrum is a good
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alternative to a drawing app. Worked-out examples are
available in [69, Chapter 6].

2) Convert Sϕ(f) into Sy(f) using

hn =
1
ν2
0

bn−2

which is equivalent to Sy(f) = (f2/ν2
0)Sϕ(f)

(Region 1.11). Newcomers may be surprised by the
small value of the hn coefficients due to ν2

0 in the
denominator.

3) Sketch the AVAR using the pattern of Region 1.7 (right)
and the formulas found in the “AVAR” column of the
table in Region 2.7. Each process (white PM, flicker PM,
and so on) requires its own formula, found in Region 2.7.

It goes without saying that the method described also applies
to the other two-sample variances discussed in Section VII,
just picking up the appropriate column in Region 2.7. The
extension to noninteger slopes is found in [114] and [115].

B. Variance to Spectrum Conversion (Regions 1.6,
1.7, and 2.7)

The variance to spectrum conversion is not possible in the
general case, but we can get useful information using the
formulas given in Region 2.7, assuming that the spectrum is
smooth and follows the polynomial law (see [116]).

The first limitation is that, in the case of AVAR and HVAR,
both white and flicker PM show up as σ2

y ∝ 1/τ2; thus, they
cannot be divided. In addition, AVAR and HVAR are almost
unusable in the white PM region because σ2

y ∝ fH . The cutoff
fH does not appear explicitly in MVAR, PVAR, and TVAR.
However, the effect of fH is hidden in the sampling process
itself and then in the data. Since data are sampled at τ0 interval,
the Nyquist frequency is (1/2τ0). Thus, if fH > (1/2τ0),
there will be spectral aliasing, and the white noise level will
be overestimated.

The second limitation is related to the resolution. In fact, the
inherent resolution of σ2

y (τ) is one octave in τ , as it follows
from the bandwidth of the main lobe in Region 1.5. Thus,
σy(τ) is usually plotted for τ in geometric series, such as
1, 2, 4, 8, . . . Conversely, the frequency resolution of Sϕ(f)
depends on the acquisition time, and plots usually represent
Sϕ(f) with a resolution of 50–100 points/decade, that is,
15–30 points per octave.

C. Cutoff Frequency fH and the Sampling Interval τ0
The cutoff frequency fH extensively used in the spectrum-

to-variance conversions is often a source of confusion. Notice
that an antialiasing filter is necessary; otherwise, the variance
does not converge in the presence of white and flicker PM
noise [113].

The phase time x(t) has finite bandwidth, which results
from the measurement process and from the architecture of the
instrument. This is generally described as the noise equivalent
bandwidth, denoted with fH .

The variance is evaluated after sampling x(t) at an appro-
priate frequency 1/τ0, which requires that fH < 1/(2τ0).
If this condition is not met, aliasing takes place. The white

Fig. 12. Beat method, applied to (a) electrical signals and (b) optical signals.
See Section X-F for the general description.

PM noise is folded 2fHτ0 times to the first Nyquist zone,
and the observed white noise level is 2fHτ0k0 instead of k0.
Flicker noise too is subject to aliasing even though the impact
on the results may be smaller. References [112], [113], and
[117] detail the specific problems related to our domain.

D. Example (fH)

Let us take an example from optics, where we beat
two 1550-nm lasers in a photodiode with the scheme of
Fig. 12, getting an RF tone at νb = 60 MHz. For
technical reasons, we choose to filter a such signal with
±0.5-MHz bandpass centered at νb. The filter halfwidth is
2.6 × 10−9 of the optical carrier; thus, the laser instability
must be <5 × 10−10 for νb to be decently centered in the filter
passband. The noise bandwidth is equal to the filter half-width,
i.e., fH = 500 kHz.

1) First Option: We measure the beat note with a counter
sampling at τ0 = 1-ms interval (for example, the old good
K&K counters, or the more recent version made by Lange
Electronic). In the conditions described, aliasing increases the
white PM noise level by a factor 2fHτ0 = 1000.

2) Second Option: We measure the same beat note with an
instrument based on direct digitization (see Section X-I and
Fig. 16) or a TDDS (see Section X-J and Fig. 17). Inside the
instrument, the ADCs are preceded by antialiasing filters, and
a low pass reduces the bandwidth of x(t) after detection. Thus,
the condition fH < 1/(2τ0) is met, and there is no aliasing.
In some instruments, fH can be set by the user.

IX. CONFIDENCE INTERVALS

Assessing the confidence intervals is all about understanding
the interplay between the “true value” σ2

y (τ) and its estimate

σ̂2
y (τ). The latter is evaluated with (33), or equivalently (34)
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for AVAR, and with similar formulas for other variances. Since
everything in this section applies separately to each value of τ ,
we let τ implied in σ̂2

y and σ2
y .

A. Direct Problem

The direct problem is similar to computer simulations,
where we add noise to a deterministic phenomenon. Without
noise, the right-hand side of (33) gives σ2

y . In this case, the
term “true value” for σ2

y is fully legitimate because uncertainty
is zero. Introducing the noise, the same equation gives the
estimate σ̂2

y , together with the associated PDF p(σ̂2
y |σ2

y ). The
notation p(|) stands for conditional probability, and the vertical
bar “|” reads “given” or “knowing,” as in p(σ̂2

y ) given p(σ2
y ).

B. Inverse Problem

The simulation approach does not help to grab the hidden
reality σ2

y from the outcome σ̂2
y . The answer is the inverse

problem, which consists of inferring the true σ2
y and the

associated pdf p(σ2
y |σ̂2

y ).
Otherwise stated, the direct problem targets the “cause →

effect?” relationship, where “?” emphasizes the unknown.
In contrast, the inverse problem targets “cause? ← effect.”
Interestingly, the “true value” σ2

y in the direct problem and the
“inferred true value” σ2

y in the inverse problem are different
things, but they are generally denoted with the same symbol
in the literature.

The evaluation of the confidence intervals in the inverse
problem may be too complex for some readers. These readers
may keep only the two results summarized in the following,
skip Section IX-C, and go straight to the choice of the
appropriate software package.

1) When a small number M−1 of realizations yk+1−yk is
available, the “error bars” are large and asymmetric. The
half bar directed upward is wider than the downward half
bar. This is seen in the example Fig. 10 for τ ≥ 4000 s
and qualitatively illustrated in Region 1.7.

2) With large M , there is no practical difference between
the direct problem and the inverse problem. The con-
fidence intervals are small and symmetric, approaching
1/
√
M − 1, as seen in Fig. 10 for τ ≤ 2000 s.

C. Application of the Bayesian Statistics to Allan Variances

Everything starts with the Bayes theorem, which states that

p(θ|ξ) =
π(θ) p(ξ|θ)

π(ξ)
, π(ξ �= 0) (42)

where p() denotes the posterior pdf and π() denotes the prior
pdf.12 It is worth mentioning that some authors use the same
symbol for both prior probability and posterior probability.
In the measurement of frequency stability, the experimental
value σ̂2

y is identified with ξ and the unknown “true” σ2
y with θ.

Thus, we have to infer a confidence interval on σ2
y .

12More specifically, π(θ) is the a priori knowledge before any measurement,
and π(ξ) is an unknown function that we do not care about because it is
independent of θ. The prior π(ξ) can be determined using the property that�

p(θ|ξ) dθ = 1.

The central limit theorem suggests that yk are Gaussian,
as they result from a lot of data. Thus, we assume that
their differences are Gaussian centered. Thus, (33) indicates
that σ̂2

y is described by a χ2 distribution with D degrees of
freedom.13 Such distribution is denoted with χ2

D. Of course,
with M values of yk, it holds that D ≤ M − 1, where the
equality indicates that all the terms (yk+1−yk) of the sum are
statistically independent. Greenhall and Riley [118] provide a
very useful method to evaluate D.

Since the random variable ξ is χ2
D distributed, the cumula-

tive density function (CDF) of ξ knowing θ, denoted with
F (ξ|θ), is also known in analytic form. The inverse CDF,
available in the major mathematical libraries, enables the user
to compute the confidence interval.

The above is for the direct problem. The inverse problem
can be solved thanks to the relevant property that a χ2

D

distribution is defined by one and only parameter, D. It has
been proven that such distributions are “fiducial” distributions
[119], which means that the equality

F (θ|ξ) = 1− F (ξ|θ) (fiducial) (43)

holds in both frequentist inference and Bayesian inference,
provided that a 1/θ prior (prior of total ignorance) is chosen
[120], [121]. This implies that the confidence intervals given
by frequentist or Bayesian methods are the same and are easy
to compute.

Note that, because the χ2
D(x) distribution is strongly asym-

metric with a steep rise at small x and slow decay at high x,
it results from (43) that p(θ|ξ) must have a steep side at some
high x and a slow decay toward x = 0. The consequence is that
the error bars on a log–log plot of AVAR are extended upward
more than downward. This behavior is more remarkable at
small D.

X. MEASUREMENT TECHNIQUES

A. Saturated-Mixer Phase Noise Analyzer

Fig. 13 shows the block diagram of a traditional phase
noise analyzer. The instrument consists of two equal channels
where a DBM compares the phase ϕ of the oscillator under
test (DUT) to the phase θ and ψ of the references. The error
signal sent to the LNA is equal to kd(ϕ−θ), or to kd(ϕ−ψ),
where kd is the mixer’s phase-to-voltage gain. The typical
value of kd is between 0.1 and 1 V/rad, depending on the
signal level, technology, and frequency.

This operating mode requires that ϕ − θ = π/2 within
±0.1 rad, and likewise ϕ− ψ, which is ensured by the PLL.
The error signal, corrected for the equation of the PLL,
is proportional to the DUT phase fluctuation versus the ref-
erences. A problem with mixers is that the power ranges are
rather narrow, from a minimum of ≈5 dBm to a maximum
of 17–20 dBm, depending on technology. The power range
can be extended by adding an amplifier at each RF input.

Assuming that the two channels are independent (separate
mixers and separate synthesizers, and no crosstalk), the aver-
age cross-spectrum is proportional to the DUT phase noise

13In the literature about statistics, the degrees of freedom are more often
denoted with ν, but, in our notation, ν is used for the carrier frequency.
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Fig. 13. Traditional phase noise analyzer. The mixers, saturated at both input,
work as phase-to-voltage converters. Two equal channels are used to reject
the background noise after averaging on multiple cross-spectra.

because the background noise of the individual channel is
rejected by the averaging process. It is worth mentioning that
averaging is essential to reject the noise of the synthesizers.
The synthesizers are necessary for the instrument to be suitable
to a wide range of frequencies, but they are generally noisier
than oscillators.

Instruments of this type are commercially available
from Anapico, Berkeley Nucleonics Corporation, Holzworth,
Keysight Technologies, NoiseXT/Arcale, and Quantic Wenzel
(a brand of Wenzel Associates). The frequency synthesiz-
ers may be inside the instrument or external modules. The
input power splitter may differ from the 3-dB directional
coupler shown in Fig. 13. We have seen Y resistive net-
works (Keysight) and V resistive networks (Holzworth).

B. Mathematical Tools for Spectral Analysis

The estimation of power spectra based on the FFT is com-
mon to all phase noise analyzers, analog or digital. The FFT
is a fast algorithm for the evaluation of the discrete Fourier
transform (DFT) and gives the same result. The algorithm
used in most software packages and libraries is the “Fastest
Fourier Transform of the West” (FFTW3) [122]. With a bit of
humor, we note that the FFTW comes from the Eastern USA.
The book [123] is Enrico’s favorite reference about the FFT,
while [124] is about the early use of the FFT in phase noise
measurements.

The most commonly used algorithm for the estimation of the
PSD, introduced in [43] and known as the Welch algorithm,
stands on the FFT. In several software packages and libraries,
the PSD function takes a name that recalls Welch. This is
the case with MATLAB, Octave, and Python (SciPy). The
classical article [125] discusses extensively the window (taper)
functions used in spectral analysis.

Bennett [126] introduces the spectral analysis of the quan-
tized signal, and Widrow et al. [127] and Widrow and Kollár
[128] provide an extensive treatise of quantization noise.

C. How the Background-Noise Rejection Works

The noise rejection is based on the cross-spectrum method,
as described in the following. Referring to Fig. 13, we define

x = ϕ− θ ↔ X = Φ−Θ (44)

y = ϕ− ψ ↔ Y = Φ−Ψ (45)

where “↔” stands for Fourier transform inverse–transform
pair, time and frequency are implied, and x and y should not
be mistaken for x and y. For us, ϕ is the signal, and θ and ψ
are the noise to be rejected. The quantities θ and ψ account
for all the noise sources, i.e., references, synthesizers, mixers,
and low-noise amplifiers.

The cross-spectrum averaged on m acquisitions is

Syx =
2
T

〈
Y X∗

〉
m

(46)

=
2
T

〈
(Φ−Ψ) (Φ−Θ)∗

〉
m

(47)

=
2
T

〈
ΦΦ∗ − ΦΘ∗ −ΨΦ∗ + ΨΘ∗

〉
m
. (48)

It is seen in Fig. 13 that ϕ, θ, and ψ are statistically inde-
pendent (separate and independent hardware), and likewise Φ,
Θ, and Ψ. Thus, the mathematical expectation of ΦΘ∗, ΨΦ∗,
and ΨΘ∗ is zero, and

Syx →
2
T

〈
ΦΦ∗

〉
m
≡ Sϕ for large m (49)

which is the same as (2). Averaging on m acquisition, the
background noise of the instrument is rejected by a factor of
∼1/
√
m, i.e., 5 dB per factor-of-10 in m. The actual rejection

depends on the estimator.
Most phase noise analyzers use the estimator

Ŝyx =
2
T

∣∣∣〈Y X∗〉
m

∣∣∣. (50)

This estimator is biased and suboptimal [129]. The residual
noise terms �ΦΘ∗�m, �ΨΦ∗�m, and �ΨΘ∗�m are proportional
to 1/

√
m.

Reference [129] shows that the real-part estimator

Ŝyx =
2
T
�

{〈
Y X∗〉

m

}
(51)

is the best option. First, it follows from (48) that ΦΦ∗ ∈ R,
the other terms are complex, and the background noise is
equally split between �{Y X∗} and �{Y X∗}. Thus, (51) is
obviously advantageous versus (50) because it keeps the entire
signal and discards the unnecessary noise in �{Y X∗}. The
residual single channel is proportional to 1/

√
2m, improving

by a factor of 2. Otherwise stated, the measurement time for
a given noise rejection is shorter by a factor of 4. A further
advantage of (51) is that it is unbiased.

Sadly, (50) is often the one and only option, and when (51)
is available, it is not the default.

The cross-spectrum method derives from radio astron-
omy [130] and from the early attempts to assess the fre-
quency fluctuations of hydrogen masers [131]. Reference
[132, Sec. IV] is arguably the first application to the mea-
surement of phase noise. It goes without saying that the
cross-spectrum method is of broader usefulness than just phase
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noise. See [129] for a tutorial, [133] for the use of Bayesian
statistics, needed to assess the statistical uncertainty when m
is small, and [134] for the extension to multiple instruments
simultaneously measuring the same physical quantity.

D. Limitations of the Cross-Spectrum Method

The noise limit ∼ 1/
√
m is often shown on the analyz-

ers’ screen under fancy names, such as “correlation factor,”
“number of correlations,” or “Xcorr,” together with L (f).
However, such noise rejection is useful only if the correlated
disturbances are sufficiently small. In fact, a disturbing term
δ ↔ Δ introduced in (44) and (45) changes the instrument
readout from Sϕ to Sϕ + ςSδ, where ς = ±1 is a sign which
depends on whether δ has the same sign or opposite sign in the
two channels. This is a systematic error of unknown sign ς .
Consequently, the common belief that the background noise
of the instrument always results in the over-estimation of the
DUT noise is untrue.

The obvious benefit of largem is high sensitivity,14 i.e., high
capability to measure small Sϕ. The inevitable drawback is
that a proportionally small Sδ can spoil the measurement.
A gross error occurs when Sδ ≈ Sϕ, but Sϕ + ςSδ > 0
still holds. Worse, if Sϕ + ςSδ < 0, the result is blatant
nonsense.

Among the causes for the disturbances δ, we mention
the thermal energy in the input power splitter, the effect
of AM on the mixers, and the RF crosstalk inside the
instrument.

Most power splitters are either four-port directional couplers
terminated at one port or Y resistive network. Such splitters,
inherently, add an amount of anticorrelated noise originating
from the thermal energy associated with the internal dissi-
pation. Thus, Sϕ < kT/P (thermal energy divided by the
carrier power) at the splitter output is a physically legitimate
outcome, but it goes with a measurement error. The exper-
imental evidence and the full theoretical proof are found in
[135]. The splitter’s thermal noise may result in the collapse
of the cross-spectrum in the measurement of oscillators [136].
Different options for the power splitter are discussed in [137].
Another perspective on the power splitters is proposed in
[138], with original results. In [139], we propose a method for
the measurement of the bias error due to both power splitter
and internal crosstalk.

The correction for the splitter’s thermal energy is trivial if
the instrument measures the carrier power. NoiseXT/Arcale
informed us that this correction now has been implemented in
the DNA.15

E. Metrologist’s Perspective of Phase Noise Uncertainty

The essential concepts that we need to understand uncer-
tainty are defined by the International Vocabulary of Metrology
[44], generally known as VIM. The VIM is published by the

14Strictly speaking, this is an improper use of the term sensitivity.
15Informal discussion with L. Adrien at the IEEE EFTF IFCS Joint Meeting,

Paris, April 2022.

BIPM, the international organization in charge to ensure the
worldwide unification of measurements.16

The statistical noise limit ∼ 1/
√
m falls into Type A

evaluation of measurement uncertainty [44, Entry 2.28].
Other components of uncertainty (crosstalk, AM noise,

thermal energy, and so on) cannot be calculated from the
measurement outcomes. They fall into Type B evaluation of
measurement uncertainty [44, Entry 2.29], which relies on the
analysis of the system.

Literature of the past ten years [136], [137], [138], [139]
and three workshops [140], [141], [142] point to substantial
errors and discrepancies in the measurement of commer-
cial oscillators exhibiting very-low phase noise. The con-
cept of null measurement uncertainty applies [44, Entry
4.29], which is the uncertainty in the special case of signal
approaching zero. Broadly speaking, this is the extrapolation
of uncertainty to the measurement of a noise-free oscilla-
tor and tells us the minimum detectable amount of phase
noise.

We encourage the reader to get the awareness of the
definitional uncertainty [44, Entry 2.27], the component of
uncertainty resulting from the lack of knowledge of details
in the definition of the DUT, and of the influence quantity,
a quantity affecting the relation between the indication and the
measurement result. However, the direct application of these
concepts to phase noise is not straightforward.

Reading the instruments’ specs, we often find the uncer-
tainty (or improperly, error) and the sensitivity parameters.
For example, we may read that the uncertainty is ±3 dB
for f < 1 kHz and ±2 dB for f ≥ 1 kHz. Similar
information may be more detailed, in the form of a table.
Forgiving the “±” symbol, we interpret this as the type B
uncertainty. The sensitivity takes the form of a table or a
spectrum, indicating L (f) for relevant values of ν0 and f ,
for example, −160 dBc/Hz at 1-GHz carrier and 100-kHz
“offset” (actually, modulation frequency). We are inclined to
interpret this parameter as the “null measurement uncertainty.”
Note that the term “sensitivity” found in this context is quite
different from the VIM definition [44, Entry 4.12]. That said,
we observed that users tend to trust a measured noise level
below the “sensitivity” of the instrument, provided that it is
still higher than the “∼ 1/

√
m” statistical limit seen on the

screen. This practice is encouraged by ads showing a “typical”
background noise, clearly lower than specs.

F. Beat Method

The method, as shown in Fig. 12, makes use of
the leverage effect, which results from beating ν0 down to
νb = ν0 − νref. Mathematically,

2 cos
[
2πν0t+ ϕ(t)

]
cos

[
2πνreft+ ψ(t)]
= cos

[
2πνbt+ ϕ(t) − ψ(t)

]
(52)

after deleting the νb + νref term with the LPF. The beat note
preserves the frequency fluctuations ν0 − νref and the phase

16The international coordination of metrology is a complex topic even for
specialists because it has both scientific and political implications under the
Metre Convention. The reader interested can find all information on the BIPM
site https://bipm.org.
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Fig. 14. Discriminator method for the measurement of phase noise in
oscillators. (a) Block diagram of the two-channel instrument. (b) Phase space
representation of one channel.

fluctuation ϕ−ψ, and stretches the time fluctuation by a factor
κ 
 ν0/νb.

This method is often used to beat microwave signals down
to the RF region, where we can use digital instruments.
In optics, this is the preferred option to measure the fluctua-
tions of a stabilized laser with electrical instruments.

G. Discriminator Method

The use of a reference discriminator, either a resonator or
a delay line, is another way to measure the phase noise of
an oscillator by comparing the oscillator output to a delayed
version of the same signal.

Fig. 14 shows the principle and the equivalent scheme in
phase space. The latter follows the same approach used with
the oscillator (see Section V). Using the upper case for the
Fourier transform of the lowercase function of time, the output
is Ψ(f) = kd [1−H(f)] Φ(f), where the discriminator’s
phase response is H(f) = (1/τ)/(jf + 1/τ) for a resonator
characterized by the relaxation time τ and H(f) = e−j2πτf

for a delay line characterized by the delay τ . Accordingly,
Φ(f) is evaluated from the analyzer readout as

Φ(f) =
1

kd [1−H(f)]
Ψ(f). (53)

Finally, using the two-channel configuration, the oscillator
phase noise is evaluated as

Sϕ(f) =
1

k2
d |1−H(f)|2

Sψθ(f). (54)

This idea is for sure old, albeit we could not track the origin.
The scheme (see Fig. 14) is suitable for implementations based
on most or all the phase noise analyzers described in this
Section. The standard 1.55-μm optical fiber of appropriate
length carrying a modulated beam is a good idea to delay a
microwave signal. We implemented a single-channel version
[143], and we further developed this concept by adding the

Fig. 15. Scheme of the bridge (interferometric) phase noise measurement.

cross-spectrum method [144], [145]. To the best of our knowl-
edge, the OEwaves OE8000 is the one and only commercial
phase noise analyzer based on photonic delay.

H. Bridge (Interferometric) Method

The bridge (see Fig. 15) is an advanced method exhibiting
extremely low background noise. The bridge must be at equi-
librium, achieved by setting the bridge’s phase and amplitude.
At the equilibrium, the carrier is suppressed at the Δ port,
and all the DUT power P0 goes to the Σ port. The DUT noise
sidebands, equally split between Σ and Δ, are amplified and
synchronously detected by the mixer. The variable phase at the
mixer LO port sets the detection of PM, AM, or a combination
of them. Unlike the previous schemes, the mixer works in a
linear regime, where the RF input is a small signal, and of
course, the LO input is saturated.

Low background flicker b−1 is the main benefit. In fact, the
passive components used in the bridge (directional couplers,
line stretchers, attenuators, and so on) feature extremely low
flicker compared to semiconductors and active devices, and
the amplifier PM flicker is reduced proportionally to the carrier
rejection because flicker comes from upconversion of the near-
dc noise.

The bridge exhibits low white noise as well. Neglecting
trivial losses, the background noise is b0 = 2FkT0/P0, where
F is the amplifier noise factor, kT0 is the thermal energy at
room temperature, and P0 is the power at the DUT output.
The factor “2” means that only half the DUT noise goes to
the amplifier, and the other half goes to the Σ port, but it can
be reduced using an asymmetrical power combiner.

Finally, low sensitivity to ac magnetic fields from the power
grid is easily achieved because RF amplification (20–40 dB)
takes place before downconverting to dc.

No commercial solutions exist, but the scheme of Fig. 15
can be built on top of a commercial phase noise analyzer,
including the modern dual-channel instruments.

The main ideas derive from Sann [146], but the RF ampli-
fication was introduced later by Labaar [147]. The method
knew a sudden popularity in the late 1990s in Australia [148],
[149] and France [150]. We used it for the measurement of
frequency stability in piezoelectric quartz resonators [151] and
of the phase noise of DACs and DDSs [152]. We demonstrated
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Fig. 16. Digital phase noise and AVAR analyzer.

ultimate sensitivity by adding the correlation for lowest white
noise [135] and a multistage bridge for lowest flicker [153].

I. Digital Phase Noise and Allan-Variance Analyzer

Fig. 16 shows the block diagram of a digital phase noise
analyzer. The architecture differs from Fig. 13 in the use of
SDR techniques. The input signal is digitized and downcon-
verted to an I-Q stream at zero or near-zero frequency by
multiplying the input data with sinusoidal signals from an
NCO. The CORDIC algorithm [154], [155], [156] is probably
the best option to convert the IQ stream into polar coordinates,
phase, and amplitude. The reference input signals A and B
cannot be used as the sampling signal because the ADCs
do not work well at arbitrary clock frequency. Consequently,
the measurement of ϕ − θ requires two ADCs clocked by
a common-mode oscillator, whose fluctuation is rejected.
In turn, four ADCs are needed to reject the instrument noise.

The digital architecture has the following interesting
features.

1) It is great at measuring large values of ϕ(t), not limited
to ±π, and even millions of cycles are not a problem.

2) The use of a separate NCO at each input removes the
requirement that the inputs are at the same frequency
because all phases can be referred to the same ν0 after
a trivial numerical conversion.

3) Full control on fH in the measurement of AVARs.

These properties make digital architecture great at measuring
both phase noise and variances, and open new perspectives.

Reference [157] pioneered the measurement of phase noise
and the AVAR with direct digitization of the RF signal.
Later, Mochizuki et al. [158] provide a more detailed treatise,
and Sherman and Jördens [159] focus on SDR techniques.
The experimental methods for the noise characterization of

ADCs for AM/PM noise measurements are shown in [160],
and Calosso et al. [152] introduce a new method for the
measurement of AM and PM noises in DACs and DDSs based
on the amplification of the (random) modulation index, with
optional AM/PM and PM/AM conversion.

Digital instruments are commercially available from
Arcale (NoiseXT) and Microchip (Jackson Labs Technolo-
gies and Microsemi). The maximum frequency is limited
to 30–400 MHz, depending on the instrument. Such instru-
ments may have the reference oscillator(s) inside or rely
entirely on external oscillators. If the inputs A and B are
accessed through a single connector instead of being available
separately, the instrument cannot reject the noise of such oscil-
lator. A hobby project is available from Andrew Holme’s home
page,17 based on commercial boards, which even includes the
source code and the binaries.

The Rohde & Schwarz analyzers FSWP and FSPN are
based on similar concepts, but they implement microwave-
to-IF downconversion to extend the input range to 8, 26,
or 50 GHz, depending on the model. They include two
OCXOs and synthesizers as references and work with external
references as well. The internal architecture of the FSWP is
explained in [161].

J. Tracking DDS

The TDDS [162] is a PLL where the VCO is replaced
with a DDS. The lock differs from a regular PLL in that the
FPGA acts on the numerical phase of the DDS, instead of
on the frequency of a VCO. Thus, an additional integrator is
needed in the control loop. Interestingly, the TDDS locks in a
wider frequency range than most PLLs, being limited by the
frequency range of the mixer and the DDS. The background
noise is limited by the DDS (see [68] for the DDS noise),
noisier than double-balanced mixers.

Fig. 17 shows a multichannel TDDS. At the start of the
operation, the FPGA sets the numerical frequency of all
the DDSs to the frequency of the respective input. Then,
the FPGA phase-locks each DDS to the input. At the same
time, the FPGA provides the estimation of all the phase–time
differences �xi − xj by combining the numerical phases and dc
errors.

A multichannel TDDS was successfully used for the direct
measurement of the frequency stability at the 100-MHz output
of cryogenic sapphire oscillators [163]. The Italian insti-
tute of metrology INRiM has developed the Time Proces-
sor, a multichannel TDDS for the continuous monitoring
and stability measurement of high-end oscillators and atomic
frequency standards. Albeit some prototypes have already
been transferred under contract to qualified users (Euro-
pean Space Agency and the FEMTO-ST Institute), up until
now, there is only a conference publication [164]. The
Principal Investigator informed us18 that a startup company
is being created, under the provisional name Kairos TeX.
The PicoPak,19 a single channel TDDS, was produced by

17http://www.aholme.co.uk/PhaseNoise/Main.htm
18Claudio E. Calosso, Private Communication, October 2022.
19Hamilton Technical Services, http://www.wriley.com/7510A.pdf
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Fig. 17. TDDS.

Fig. 18. Multichannel analog AVAR analyzer.

Precision Time and Frequency, LLC, but it is unsure whether
it is still available.

K. Multichannel Analog Allan Variance Analyzer

This type of analyzer is a highly specialized instru-
ment intended to simultaneously monitor multiple oscilla-
tors in a time scale (Cs beams, fountains, and H masers),
usually comparing the 10- or 100-MHz outputs. Fig. 18
shows an example, easily extended to more than four
inputs.

The machine exploits the leverage effect seen in
Section X-F, but, in this case, the pivot frequency νp is just
below ν0 so that νb is in the subaudio or low-audio range.
Accordingly, x(t) = ϕ(t)/2πν is stretched by a factor κ =
ν0/νb. With κ = 106, a 100-MHz signal can be measured with
10-fs resolution using a simple counter that has a resolution

of 10 ns. However, the actual resolution is limited by other
factors.

The dual-mixer method, later extended to the multichan-
nel system shown in Fig. 18, is introduced in [165]. Brida
[166] discuss the design of the dual-mixer system, providing
interesting experimental data. The best choice for the ZCD is
a multistage amplifier where the first stage has narrow band-
width for low noise, and the bandwidth increases progressively
toward the output to allow a high slew rate in the saturated
signal [167], [168].

Major metrology labs have been using instruments based on
this principle for many years. However, those instruments are
house-built prototypes. Commercial units are available from
Quartzlock (U.K.), Time Tech (Germany), and VREMYA-CH
(Russia).

XI. SOFTWARE TOOLS

A quick Internet search reveals that there is a rather broad
choice of software packages for the AVAR but almost none
for phase noise. This relates to the fact that the variances
are used to investigate slow phenomena; thus, they require
rather low sampling rate and small digital storage space.
A value of 1 kS/s is generally sufficient for all practical cases,
but 1 or 10 S/s is most often used in atomic time scales.
Conversely, it is quite common to plot the phase noise up to
1-MHz Fourier frequency. This requires a practical minimum
of 2.5 MS/s, allowing a mere 250 kHz for the antialiasing filter
to roll off. In turn, a transfer rate of 10 MB/s is necessary
for a cross-spectrum system under the hypothesis that the
phase is encoded on 16 bits. Thus, a measurement lasting
100 s takes 1-GB disk space. To the best of our knowledge,
noise analyzers do not save or transfer raw data of this size
and at this rate. TimeLab20 is no exception, to the extent
that continuous gap-free IQ data are transferred from the
3120A/5330A/53100A instruments to the computer at reduced
bandwidth (100 kHz). Faster IQ data required to plot spectra
up to the maximum frequency of 1 MHz are transferred in
bursts with a 10% duty cycle. Only the spectra bins are saved
in the .TIM files, together with gap-free data at a significantly
lower rate (1 kS/s) for time measurements and AVARs.

We present a selection of software packages (see Table II),
chosen for their scientific value or for their wide use. The
grayed area highlights some interesting features.

A. Features

1) Main Purposes: AllanTools, SigmaTheta, and Stable32
are intended for data analysis. By contrast, TimeLab is a
tool for data acquisition, with limited analysis capabilities.
It supports the phase noise analyzers from Jackson Lab
and Microchip (formerly Microsemi), and a few frequency
counters.

2) Graphical Interface Versus Scripting: Albeit elderly,
Stable32 has an efficient graphical interface, which makes it
a great choice for occasional users. For this reason, it is by
far the most widely used. AllanTools and SigmaTheta require

20Information provided by John Miles, September 2022.
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TABLE II

SOFTWARE TOOLS FOR THE TWO-SAMPLE VARIANCES

programming skills. On the other hand, scripting is great in
that it enables the analysis of bulk of datasets at once.

3) Mathematical Functions: All the packages provide
ADEV, MDEV, and the other most used functions. For
simplicity, DEV in Table II stands for DEV or VAR.
When it comes to more exotic functions, such as Thêo
and the Groslambert covariance, the choice of packages is
smaller.

4) Estimator: The unique feature of SigmaTheta is that
it uses Bayesian statistics (inverse problem) to estimate the
variances. The other packages evaluate the average value using
the classical formulas such as (34) for AVAR.

5) Missing Data: The GRADEV, included only in Allan-
Tools, enables the evaluation of ADEV in the case of missing
data during the measurement.

6) Error Bars: The basic choice is between the classical
Lesage–Audoin algorithm [169] and the more sophisticated
Greenhall–Riley algorithm [118]. The LA algorithm uses the
square root of the fourth moment, assuming that the error dis-

TABLE III

SOFTWARE AVAILABILITY AND DEVELOPERS

tribution is Gaussian centered around the estimate. By contrast,
the GR algorithm estimates the degrees of freedom using the
χ2 distribution. For each value of τ , the number of samples
and the dominant noise type are taken into account.

However, Wallin [170] points out that the identification of
noise processes is also needed. In the same blog, it is said that
AllanTools has no “intelligent” top-level algorithm that takes
a time series as input and would choose between lag-1-ACF,
B1, and R(n), and automatically determine the power-law
noise type. Wallin suggests that Stable32 may use a combi-
nation of lag-1-autocorrelation [171], B1-ratio [172], [173],
and R(n).

Finally, the principles used inside SigmaTheta are discussed
in Section IX-C.

B. Software Availability

The availability is summarized in Table III. AllanTools and
SigmaTheta are open codes released to the public domain
under very similar licenses. Stable32 is IEEE. The developers
informed us21 that the code itself is covered by the MIT
license, but compiling needs code from other sources. They
are trying to clean the code for it to be released into the public
domain, provided that the IEEE agrees, with the ultimate goal
of having at least Linux, macOS, and Windows distributions
available.

21Magnus Danielson, private email.
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APPENDIX

A. Notation and Symbols

dot (ȧ) Derivative over time.
bar (ā) Mean or weighted average.
hat (â) Estimation.
↔ Fourier or Laplace transform inverse–

transform pair.
� � Mathematical expectation, same as E{}.
� �τ Average over a specified time interval τ .
� �n Average over an integer number n of

samples.
B Bandwidth of the baseband signal and

AM/PM noise (the bandwidth of the RF
signal is 2B).

bn Coefficients of the polynomial law of
Sϕ(f).

Dy Fractional-frequency drift.
D Degrees of freedom (often denoted with

ν, dof or DOF in the literature about
statistics).

dn Coefficients of the polynomial law of
Sν(f).

E{ } Mathematical expectation.
F Noise factor (see NF in the following).
f Fourier frequency, in spectral analysis.
fc Corner frequency, where flicker noise

equals white noise.
fL Resonator’s Leeson frequency (baseband

bandwidth), half of the RF bandwidth.
hn Coefficients of the polynomial law of

Sy(f).
H(f) Transfer function, typically in |H(f)|2.
kn Coefficients of the polynomial law of

Sx(f).
L (f) Phase noise, usually 10 log10[L (f)]

[dBc/Hz].
N White noise PSD [W/Hz].
NF Noise figure, NF = 10 log10(F ).
P Carrier power.
Q Quality factor, in resonators.

22Private email, February 5, 2020.

Sx(f) One-sided power spectral density of the
random variable x(t). For us, chiefly, α,
ϕ, x, y, and ν.

T Time interval, or period.
T Acquisition time (data record for one

FFT).
T (Subscript) signal truncated over a dura-

tion T , as in xT (t) and XT (f).
T Total acquisition time (full data record

used in the measurement).
t Time.
V0 Peak amplitude (of the clock signal).
w(t; τ) Weight function (counters) or

wavelet-like function (variances).
x(t) Time fluctuation.
y(t) Fractional frequency fluctuation.
α(t) Fractional amplitude fluctuation.
(Δν)(t) Frequency fluctuation.
�(t) Amplitude fluctuation.
θ(t) Random phase, replacement for ϕ(t),

when needed.
Λ Triangular average or a frequency

counter implementing triangular average.
ν Carrier frequency.
Π Uniform average or a frequency counter

implementing uniform average.
σ2

x (τ) Same as TVAR, used in formulas.
Aσ2

y (τ) Same as AVAR, used in formulas.
Mσ2

y (τ) Same as MVAR, used in formulas.
Pσ2

y (τ) Same as PVAR, used in formulas.
Hσ2

y (τ) Same as HVAR, used in formulas.
τ Delay (delay line).
τ Measurement (integration) time.
τ Relaxation time, in resonators.
τ Time shift (correlation, convolution, and

so on).
ϕ(t) Random phase.
ψ(t) Random phase, replacement for ϕ(t),

when needed.
ω Shorthand for 2πν.
Ω Shorthand for 2πf .
Ω Parabolic-weight average or a frequency

counter implementing such average.

B. Acronyms
ADC Analog-to-digital converter.
AM Amplitude modulation (also AM noise).
ADEV Square root of AVAR.
AVAR Allan VARiance.
BER Bit error rate (digital electronics and telecom).
BPF Bandpass filter.
CORDIC COordinate Rotation DIgital Computer or

Volder’s algorithm.
DAC Digital-to-analog converter.
DBM Double balanced mixer.
DDS Direct digital synthesizer.
DUT Device under test (oscillator or two-port

component).
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FFT Fast Fourier transform.
FM Frequency modulation (also FM noise).
FPGA Field-programmable gate array.
FS Femtosecond (laser).
GRADEV Gap-resistant ADEV.
HDEV Square root of HVAR.
HVAR Hadamard VARiance.
IF Intermediate frequency (superheterodyne

receiver). Also IF output of a mixer.
IQ In-phase and quadrature

(detection, modulation).
LiDAR Light detection and ranging.
LIGO Laser Interferometer Gravitational-Wave

Observatory.
LO Local oscillator (superheterodyne). Also LO

input of a mixer.
LPF Low-pass filter.
LSB Lower sideband, in modulated signals.
MDEV Square root of MVAR.
MVAR Modified [Allan] VARiance.
NCO Numerically controlled oscillator.
NIST National Institute of Standards and Technology

(USA).
PLL Phase-locked loop.
PM Phase modulation (also PM noise).
PDF Probability density function.
PSD Power spectral density.
PDEV Square root of PVAR.
PVAR Parabolic VARiance.
RF Radio frequency. Also RF input of a mixer.
SDR Software-defined radio.
TDDS Tracking direct digital synthesizer.
TIE Time interval error [32].
TVAR Time VARiance.
USB Upper sideband, in modulated signals.
VCO Voltage-controlled oscillator. Also voltage-

control input of an oscillator.
ZCD Zero-crossing detector.
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